IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp954-972.html
   My bibliography  Save this article

Solar energy harvesting on-board small satellites

Author

Listed:
  • Leverone, Fiona
  • Pini, Matteo
  • Cervone, Angelo
  • Gill, Eberhard

Abstract

Small satellites are receiving increased recognition in the space domain due to their reduced associated launch costs and shorter lead time when compared to larger satellites. However, this advantage is often at the expense of mission capabilities, such as available electrical power and propulsion. A possible solution is to shift from the conventional solar photovoltaic and battery configuration to a micro-Organic Rankine Cycle (ORC) and thermal energy storage system that uses the waste energy from a solar thermal propulsion system. However, limited literature is available on micro-ORC systems, which are capable of producing a few hundred Watts of electrical power. This paper describes the proposed system layout and model of the integrated micro-ORC system, for various working fluids such as Toluene, Hexamethyldisiloxane (MM), and Octamethylcyclotetrasiloxane (D4). Toluene has been identified as a promising working fluid candidate resulting in a power generation system volume fraction of 18% for a 215 kg Low Earth Orbit satellite. The micro-ORC system is capable of producing 200 W of electrical power. The design provides high specific energies of at least 500 Wh/kg but, has a low shared specific power of 10 W/kg. A preliminary design of the micro-turbine provides a conservative total-to-static efficiency of 57%.

Suggested Citation

  • Leverone, Fiona & Pini, Matteo & Cervone, Angelo & Gill, Eberhard, 2020. "Solar energy harvesting on-board small satellites," Renewable Energy, Elsevier, vol. 159(C), pages 954-972.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:954-972
    DOI: 10.1016/j.renene.2020.05.176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toro, Claudia & Lior, Noam, 2017. "Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation," Energy, Elsevier, vol. 120(C), pages 549-564.
    2. Mendoza Castellanos, Luis Sebastian & Carrillo Caballero, Gaylord Enrique & Melian Cobas, Vladimir Rafael & Silva Lora, Electo Eduardo & Martinez Reyes, Arnaldo Martin, 2017. "Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation," Renewable Energy, Elsevier, vol. 107(C), pages 23-35.
    3. Daniel Schubert, 2012. "Mems-Concept Using Micro Turbines for Satellite Power Supply," Chapters, in: Radu Dan Rugescu (ed.), Solar Power, IntechOpen.
    4. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    5. Ghaebi, Hadi & Yari, Mortaza & Gargari, Saeed Ghavami & Rostamzadeh, Hadi, 2019. "Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen," Renewable Energy, Elsevier, vol. 130(C), pages 87-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Dinghua & Li, Mengmeng & Li, Qiang, 2021. "A solar thermal storage power generation system based on lunar in-situ resources utilization: modeling and analysis," Energy, Elsevier, vol. 223(C).
    2. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    3. Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.
    4. Osorio, Julian D. & Panwar, Mayank & Rivera-Alvarez, Alejandro & Chryssostomidis, Chrys & Hovsapian, Rob & Mohanpurkar, Manish & Chanda, Sayonsom & Williams, Herbert, 2020. "Enabling thermal efficiency improvement and waste heat recovery using liquid air harnessed from offshore renewable energy sources," Applied Energy, Elsevier, vol. 275(C).
    5. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar & Amir Reza Razmi, 2020. "4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant with Flue Gas Condensation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    6. Marian Piwowarski & Krzysztof Kosowski & Marcin Richert, 2023. "Organic Supercritical Thermodynamic Cycles with Isothermal Turbine," Energies, MDPI, vol. 16(12), pages 1-17, June.
    7. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    8. Huo, Erguang & Hu, Zheng & Wang, Shukun & Xin, Liyong & Bai, Mengna, 2022. "Thermal decomposition and interaction mechanism of HFC-227ea/n-hexane as a zeotropic working fluid for organic Rankine cycle," Energy, Elsevier, vol. 246(C).
    9. Witanowski, Ł. & Klonowicz, P. & Lampart, P. & Suchocki, T. & Jędrzejewski, Ł. & Zaniewski, D. & Klimaszewski, P., 2020. "Optimization of an axial turbine for a small scale ORC waste heat recovery system," Energy, Elsevier, vol. 205(C).
    10. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2016. "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system," Energy, Elsevier, vol. 113(C), pages 1062-1070.
    11. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    12. Woodland, Brandon J. & Ziviani, Davide & Braun, James E. & Groll, Eckhard A., 2020. "Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery," Energy, Elsevier, vol. 193(C).
    13. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    14. Zhang, Lijun & Chennells, Michael & Xia, Xiaohua, 2018. "A power dispatch model for a ferrochrome plant heat recovery cogeneration system," Applied Energy, Elsevier, vol. 227(C), pages 180-189.
    15. Kang, Lixia & Tang, Jianping & Liu, Yongzhong, 2020. "Optimal design of an organic Rankine cycle system considering the expected variations on heat sources," Energy, Elsevier, vol. 213(C).
    16. Briola, Stefano & Gabbrielli, Roberto & Baccioli, Andrea & Fino, Andrea & Bischi, Aldo, 2021. "Thermo-economic analysis of a novel trigeneration cycle enabled by two-phase machines," Energy, Elsevier, vol. 227(C).
    17. Huang, Xiaojian & Lu, Pei & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Liang, Yingzong & Wang, Chao & Chen, Ying, 2020. "Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle," Energy, Elsevier, vol. 195(C).
    18. Marcin Jankowski & Aleksandra Borsukiewicz, 2020. "A Novel Exergy Indicator for Maximizing Energy Utilization in Low-Temperature ORC," Energies, MDPI, vol. 13(7), pages 1-20, April.
    19. Michael Chukwuemeka Ekwonu & Mirae Kim & Binqi Chen & Muhammad Tauseef Nasir & Kyung Chun Kim, 2023. "Dynamic Simulation of Partial Load Operation of an Organic Rankine Cycle with Two Parallel Expanders," Energies, MDPI, vol. 16(1), pages 1-18, January.
    20. Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:954-972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.