IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v222y2021ics036054422100102x.html
   My bibliography  Save this article

Measurements of boil-off gas and stratification in cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas

Author

Listed:
  • Perez, Fernando
  • Al Ghafri, Saif Z.S.
  • Gallagher, Liam
  • Siahvashi, Arman
  • Ryu, Yonghee
  • Kim, Sungwoo
  • Kim, Sung Gyu
  • Johns, Michael L.
  • May, Eric F.

Abstract

The boil-off gas (BOG) produced from liquefied natural gas (LNG) mixtures in cryogenic storage tanks must be predicted reliably as a function of tank shape, heat ingress, thermal stratification, pressure, and liquid volume fraction. However, current methods of estimating BOG rates for large-scale tanks are entirely empirical and based on limited available data, with no models available for reliable predictions. This affects the ability of LNG carriers to optimise BOG compressor sizing. A new apparatus was developed to explore the effects of heat flux, liquid stratification, volume, and mixture composition on the measured boil-off rate. The apparatus is demonstrated using liquid nitrogen with BOG rates quantified as a function of various heat fluxes, pressures, and initial liquid volume fractions. Three distinct periods of boil-off were observed: the pressurisation, transient, and steady-state stages. The data are compared with the available literature and the predictions of a new dynamic model accounting for heat transfer from the super-heated vapour. Excellent agreement is observed between model predictions and the data measured during the pressurisation and steady-state stages. However, the model does not capture the BOG rate observed in the transient stage, suggesting liquid thermal stratification should be considered in future models for LNG boil-off.

Suggested Citation

  • Perez, Fernando & Al Ghafri, Saif Z.S. & Gallagher, Liam & Siahvashi, Arman & Ryu, Yonghee & Kim, Sungwoo & Kim, Sung Gyu & Johns, Michael L. & May, Eric F., 2021. "Measurements of boil-off gas and stratification in cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas," Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:energy:v:222:y:2021:i:c:s036054422100102x
    DOI: 10.1016/j.energy.2021.119853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100102X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Migliore, Calogero & Salehi, Amin & Vesovic, Velisa, 2017. "A non-equilibrium approach to modelling the weathering of stored Liquefied Natural Gas (LNG)," Energy, Elsevier, vol. 124(C), pages 684-692.
    2. Kurle, Yogesh M. & Wang, Sujing & Xu, Qiang, 2015. "Simulation study on boil-off gas minimization and recovery strategies at LNG exporting terminals," Applied Energy, Elsevier, vol. 156(C), pages 628-641.
    3. Miana, Mario & Hoyo, Rafael del & Rodrigálvarez, Vega & Valdés, José Ramón & Llorens, Raúl, 2010. "Calculation models for prediction of Liquefied Natural Gas (LNG) ageing during ship transportation," Applied Energy, Elsevier, vol. 87(5), pages 1687-1700, May.
    4. Kim, Donghoi & Hwang, Chulmin & Gundersen, Truls & Lim, Youngsub, 2019. "Process design and economic optimization of boil-off-gas re-liquefaction systems for LNG carriers," Energy, Elsevier, vol. 173(C), pages 1119-1129.
    5. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    6. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    7. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2020. "Non-equilibrium thermodynamic model for liquefied natural gas storage tanks," Energy, Elsevier, vol. 190(C).
    8. Pfoser, Sarah & Schauer, Oliver & Costa, Yasel, 2018. "Acceptance of LNG as an alternative fuel: Determinants and policy implications," Energy Policy, Elsevier, vol. 120(C), pages 259-267.
    9. Chen, Jiandong & Yu, Jie & Ai, Bowei & Song, Malin & Hou, Wenxuan, 2019. "Determinants of global natural gas consumption and import–export flows," Energy Economics, Elsevier, vol. 83(C), pages 588-602.
    10. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    11. Yoo, Byeong-Yong, 2017. "Economic assessment of liquefied natural gas (LNG) as a marine fuel for CO2 carriers compared to marine gas oil (MGO)," Energy, Elsevier, vol. 121(C), pages 772-780.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huerta, Felipe & Vesovic, Velisa, 2024. "CFD modelling of the non-isobaric evaporation of cryogenic liquids in storage tanks," Applied Energy, Elsevier, vol. 356(C).
    2. Jung, Byungchan & Park, Kiheum & Sohn, Younghoon & Oh, Juyoung & Lee, Joon Chae & Jung, Hae Won & Seo, Yutaek & Lim, Youngsub, 2022. "Prediction model of LNG weathering using net mass and heat transfer," Energy, Elsevier, vol. 247(C).
    3. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2022. "Thermal stratification and rollover phenomena in liquefied natural gas tanks," Energy, Elsevier, vol. 238(PC).
    4. Marques, Pedro A. & Ahizi, Samuel & Mendez, Miguel A., 2024. "Real-time data assimilation for the thermodynamic modeling of cryogenic storage tanks," Energy, Elsevier, vol. 302(C).
    5. Kang, Goanwoo & Im, Junyoung & Lee, Chul-Jin, 2024. "Operational strategy to minimize operating cost in LNG terminal using a comprehensive numerical boil-off gas model," Energy, Elsevier, vol. 296(C).
    6. Chen, Han & Yang, Guang & Wu, Jingyi, 2023. "A multi-zone thermodynamic model for predicting LNG ageing in large cryogenic tanks," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Zhongdi & Wang, Jianhu & Yuan, Yuchao & Tang, Wenyong & Xue, Hongxiang, 2023. "Near-wall thermal regulation for cryogenic storage by adsorbent coating: Modelling and pore-scale investigation," Applied Energy, Elsevier, vol. 349(C).
    2. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    3. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    4. Jung, Byungchan & Park, Kiheum & Sohn, Younghoon & Oh, Juyoung & Lee, Joon Chae & Jung, Hae Won & Seo, Yutaek & Lim, Youngsub, 2022. "Prediction model of LNG weathering using net mass and heat transfer," Energy, Elsevier, vol. 247(C).
    5. Mohd Shariq Khan & Muhammad Abdul Qyyum & Wahid Ali & Aref Wazwaz & Khursheed B. Ansari & Moonyong Lee, 2020. "Energy Saving through Efficient BOG Prediction and Impact of Static Boil-off-Rate in Full Containment-Type LNG Storage Tank," Energies, MDPI, vol. 13(21), pages 1-14, October.
    6. Duan, Zhongdi & Zhu, Yifeng & Wang, Chenbiao & Yuan, Yuchao & Xue, Hongxiang & Tang, Wenyong, 2023. "Numerical and theoretical prediction of the thermodynamic response in marine LNG fuel tanks under sloshing conditions," Energy, Elsevier, vol. 270(C).
    7. Davide Borelli & Francesco Devia & Corrado Schenone & Federico Silenzi & Luca A. Tagliafico, 2021. "Dynamic Modelling of LNG Powered Combined Energy Systems in Port Areas," Energies, MDPI, vol. 14(12), pages 1-18, June.
    8. Marques, Pedro A. & Ahizi, Samuel & Mendez, Miguel A., 2024. "Real-time data assimilation for the thermodynamic modeling of cryogenic storage tanks," Energy, Elsevier, vol. 302(C).
    9. Kang, Goanwoo & Im, Junyoung & Lee, Chul-Jin, 2024. "Operational strategy to minimize operating cost in LNG terminal using a comprehensive numerical boil-off gas model," Energy, Elsevier, vol. 296(C).
    10. Thiaucourt, Jonas & Marty, Pierre & Hetet, Jean-François, 2020. "Impact of natural gas quality on engine performances during a voyage using a thermodynamic fuel system model," Energy, Elsevier, vol. 197(C).
    11. Wu, Sixian & Ju, Yonglin, 2021. "Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation," Energy, Elsevier, vol. 223(C).
    12. Peng Yu & Yuanchao Yin & Qianjin Yue & Shanghua Wu, 2022. "Experimental Study of Ship Motion Effect on Pressurization and Holding Time of Tank Containers during Marine Transportation," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    13. Duan, Zhongdi & Xue, Hongxiang & Gong, Xueru & Tang, Wenyong, 2021. "A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect," Energy, Elsevier, vol. 233(C).
    14. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    15. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
    16. Martin Jurkovič & Tomáš Kalina & Ondrej Stopka & Piotr Gorzelanczyk & Borna Abramović, 2021. "Economic Calculation and Operations Research in Terms of LNG Carriage by Water Transport: A Case Study of the Port of Bratislava," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    17. Saadat Ullah Khan Suri & Muhammad Khaliq Majeed & Muhammad Shakeel Ahmad, 2023. "Simulation Analysis of Novel Integrated LNG Regasification-Organic Rankine Cycle and Anti-Sublimation Process to Generate Clean Energy," Energies, MDPI, vol. 16(6), pages 1-20, March.
    18. Siahvashi, Arman & Al Ghafri, Saif Z.S. & Yang, Xiaoxian & Rowland, Darren & May, Eric F., 2021. "Avoiding costly LNG plant freeze-out-induced shutdowns: Measurement and modelling for neopentane solubility at LNG conditions," Energy, Elsevier, vol. 217(C).
    19. Kwak, Dong-Hun & Heo, Jeong-Ho & Park, Seung-Ha & Seo, Seok-Jang & Kim, Jin-Kuk, 2018. "Energy-efficient design and optimization of boil-off gas (BOG) re-liquefaction process for liquefied natural gas (LNG)-fuelled ship," Energy, Elsevier, vol. 148(C), pages 915-929.
    20. Jo, Yeonpyeong & Shin, Kyeongseok & Hwang, Sungwon, 2021. "Development of dynamic simulation model of LNG tank and its operational strategy," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s036054422100102x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.