IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015123.html
   My bibliography  Save this article

Real-time data assimilation for the thermodynamic modeling of cryogenic storage tanks

Author

Listed:
  • Marques, Pedro A.
  • Ahizi, Samuel
  • Mendez, Miguel A.

Abstract

The thermal management of cryogenic storage tanks requires advanced control strategies to minimize the boil-off losses produced by heat leakages and sloshing-enhanced heat and mass transfer. This work presents a data-assimilation approach to calibrate a 0D thermodynamic model for cryogenic fuel tanks from data collected in real time from multiple tanks. The model combines energy and mass balance between three control volumes (the ullage vapor, the liquid, and the solid tank) with an Artificial Neural Network (ANN) for predicting the heat transfer coefficients from the current tank state.

Suggested Citation

  • Marques, Pedro A. & Ahizi, Samuel & Mendez, Miguel A., 2024. "Real-time data assimilation for the thermodynamic modeling of cryogenic storage tanks," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015123
    DOI: 10.1016/j.energy.2024.131739
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Wenbing & Sun, Peijie & Li, Peng & Zuo, Zhongqi & Huang, Yonghua, 2021. "Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank," Energy, Elsevier, vol. 231(C).
    2. Perez, Fernando & Al Ghafri, Saif Z.S. & Gallagher, Liam & Siahvashi, Arman & Ryu, Yonghee & Kim, Sungwoo & Kim, Sung Gyu & Johns, Michael L. & May, Eric F., 2021. "Measurements of boil-off gas and stratification in cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas," Energy, Elsevier, vol. 222(C).
    3. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    4. Migliore, Calogero & Salehi, Amin & Vesovic, Velisa, 2017. "A non-equilibrium approach to modelling the weathering of stored Liquefied Natural Gas (LNG)," Energy, Elsevier, vol. 124(C), pages 684-692.
    5. Tian, Zhen & Gan, Wanlong & Zou, Xianzhi & Zhang, Yuan & Gao, Wenzhong, 2022. "Performance prediction of a cryogenic organic Rankine cycle based on back propagation neural network optimized by genetic algorithm," Energy, Elsevier, vol. 254(PB).
    6. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    7. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2020. "Non-equilibrium thermodynamic model for liquefied natural gas storage tanks," Energy, Elsevier, vol. 190(C).
    8. Jo, Yeonpyeong & Shin, Kyeongseok & Hwang, Sungwon, 2021. "Development of dynamic simulation model of LNG tank and its operational strategy," Energy, Elsevier, vol. 223(C).
    9. Wang, Cheng & Ju, Yonglin & Fu, Yunzhun, 2021. "Dynamic modeling and analysis of LNG fuel tank pressurization under marine conditions," Energy, Elsevier, vol. 232(C).
    10. Duan, Zhongdi & Xue, Hongxiang & Gong, Xueru & Tang, Wenyong, 2021. "A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    2. Duan, Zhongdi & Zhu, Yifeng & Wang, Chenbiao & Yuan, Yuchao & Xue, Hongxiang & Tang, Wenyong, 2023. "Numerical and theoretical prediction of the thermodynamic response in marine LNG fuel tanks under sloshing conditions," Energy, Elsevier, vol. 270(C).
    3. Jung, Byungchan & Park, Kiheum & Sohn, Younghoon & Oh, Juyoung & Lee, Joon Chae & Jung, Hae Won & Seo, Yutaek & Lim, Youngsub, 2022. "Prediction model of LNG weathering using net mass and heat transfer," Energy, Elsevier, vol. 247(C).
    4. Kim, Jeong Hwan & Lee, Min-Kyung & Jang, Wookil & Lee, Jae-Hun, 2023. "Strain behavior of very new high manganese steel for 200,000 m3 LNG cryogenic storage tank," Energy, Elsevier, vol. 271(C).
    5. Duan, Zhongdi & Wang, Jianhu & Yuan, Yuchao & Tang, Wenyong & Xue, Hongxiang, 2023. "Near-wall thermal regulation for cryogenic storage by adsorbent coating: Modelling and pore-scale investigation," Applied Energy, Elsevier, vol. 349(C).
    6. Wu, Sixian & Ju, Yonglin, 2021. "Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation," Energy, Elsevier, vol. 223(C).
    7. Perez, Fernando & Al Ghafri, Saif Z.S. & Gallagher, Liam & Siahvashi, Arman & Ryu, Yonghee & Kim, Sungwoo & Kim, Sung Gyu & Johns, Michael L. & May, Eric F., 2021. "Measurements of boil-off gas and stratification in cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas," Energy, Elsevier, vol. 222(C).
    8. Huerta, Felipe & Vesovic, Velisa, 2024. "CFD modelling of the non-isobaric evaporation of cryogenic liquids in storage tanks," Applied Energy, Elsevier, vol. 356(C).
    9. Kang, Goanwoo & Im, Junyoung & Lee, Chul-Jin, 2024. "Operational strategy to minimize operating cost in LNG terminal using a comprehensive numerical boil-off gas model," Energy, Elsevier, vol. 296(C).
    10. Thiaucourt, Jonas & Marty, Pierre & Hetet, Jean-François, 2020. "Impact of natural gas quality on engine performances during a voyage using a thermodynamic fuel system model," Energy, Elsevier, vol. 197(C).
    11. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2022. "Thermal stratification and rollover phenomena in liquefied natural gas tanks," Energy, Elsevier, vol. 238(PC).
    12. Jo, Yeonpyeong & Shin, Kyeongseok & Hwang, Sungwon, 2021. "Development of dynamic simulation model of LNG tank and its operational strategy," Energy, Elsevier, vol. 223(C).
    13. Kim, Sungwoo & Lee, Jong-Gyu & Kim, Seongkyu & Heo, Joonyong & Bang, Chang Seon & Lee, Dong-Kil & Lee, Hoki & Park, Gunil & Lee, DongYeon & Lim, Youngsub, 2024. "Experiment and simulation of LNG self-pressurization considering temperature distribution under varying liquid level," Energy, Elsevier, vol. 290(C).
    14. Chen, Han & Yang, Guang & Wu, Jingyi, 2023. "A multi-zone thermodynamic model for predicting LNG ageing in large cryogenic tanks," Energy, Elsevier, vol. 283(C).
    15. Zhou, Mi & Ma, Shuhao & Zhang, Naiqiang, 2023. "Experimental investigation of LPG-releasing processes with varied damage sizes on a pressurized vessel," Energy, Elsevier, vol. 276(C).
    16. Peng Yu & Yuanchao Yin & Qianjin Yue & Shanghua Wu, 2022. "Experimental Study of Ship Motion Effect on Pressurization and Holding Time of Tank Containers during Marine Transportation," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    17. Duan, Zhongdi & Xue, Hongxiang & Gong, Xueru & Tang, Wenyong, 2021. "A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect," Energy, Elsevier, vol. 233(C).
    18. Mohd Shariq Khan & Muhammad Abdul Qyyum & Wahid Ali & Aref Wazwaz & Khursheed B. Ansari & Moonyong Lee, 2020. "Energy Saving through Efficient BOG Prediction and Impact of Static Boil-off-Rate in Full Containment-Type LNG Storage Tank," Energies, MDPI, vol. 13(21), pages 1-14, October.
    19. Li, Ke & Wen, Jian & Xin, Biping & Zhou, Aimin & Wang, Simin, 2024. "Transient-state modeling and thermodynamic analysis of self-pressurization liquid hydrogen tank considering effect of vacuum multi-layer insulation coupled with vapor-cooled shield," Energy, Elsevier, vol. 286(C).
    20. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2020. "Non-equilibrium thermodynamic model for liquefied natural gas storage tanks," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.