IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics036054422100133x.html
   My bibliography  Save this article

Exergy analysis of a novel multi-stage latent heat storage device based on uniformity of temperature differences fields

Author

Listed:
  • Li, Jiaqi
  • Tu, Rang
  • Liu, Mengdan
  • Wang, Siqi

Abstract

For shell-and-tube type latent heat storage devices, heat transfer rate reduces with time due to the increasement of ineffective heat transfer area. To solve this problem, a latent heat storage device, which is made of ‘replaceable multi-stage’ phase change plates (PCPs), is proposed in this paper. When one PCP has no heating ability, it is replaced by a new PCP. Effects of the ‘replaceable multi-stage’ configuration are evaluated using unmatched coefficient, which indicates uniformity of temperature differences distribution, and exergy destruction, which is influenced by the unmatched coefficient. Two replacement methods are numerically studied and based on the recommended method, effects of stage number and length of the device on heat transfer performances are investigated. It is found that, with length of the device being fixed, larger stage number results in smaller unmatched coefficient and lower exergy destruction. Therefore, higher and more stable supply air temperature can be realized. However, more frequent replacement actions are required if stage number is increased. For space heating applications, a 2-stage heating unit with length of each plate being 30 cm is recommended, which can heat indoor air from 20 °C to 29.5 °C for 8 h.

Suggested Citation

  • Li, Jiaqi & Tu, Rang & Liu, Mengdan & Wang, Siqi, 2021. "Exergy analysis of a novel multi-stage latent heat storage device based on uniformity of temperature differences fields," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s036054422100133x
    DOI: 10.1016/j.energy.2021.119884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100133X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dickinson, Ryan M. & Cruickshank, Cynthia A. & Harrison, Stephen J., 2013. "Charge and discharge strategies for a multi-tank thermal energy storage," Applied Energy, Elsevier, vol. 109(C), pages 366-373.
    2. Li, Gang & Zheng, Xuefei, 2016. "Thermal energy storage system integration forms for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 736-757.
    3. Biswas, Kaushik & Lu, Jue & Soroushian, Parviz & Shrestha, Som, 2014. "Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard," Applied Energy, Elsevier, vol. 131(C), pages 517-529.
    4. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi & Ma, Fei, 2015. "Influence of the number of stages on the heat source temperature of desiccant wheel dehumidification systems using exergy analysis," Energy, Elsevier, vol. 85(C), pages 379-391.
    5. Liu, Xiao-Hua & Zhang, Tao & Zheng, Yu-Wei & Tu, Rang, 2016. "Performance investigation and exergy analysis of two-stage desiccant wheel systems," Renewable Energy, Elsevier, vol. 86(C), pages 877-888.
    6. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2015. "Irreversible processes and performance improvement of desiccant wheel dehumidification and cooling systems using exergy," Applied Energy, Elsevier, vol. 145(C), pages 331-344.
    7. Li, Gang, 2015. "Energy and exergy performance assessments for latent heat thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 926-954.
    8. Kutlu, Cagri & Zhang, Yanan & Elmer, Theo & Su, Yuehong & Riffat, Saffa, 2020. "A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs," Renewable Energy, Elsevier, vol. 152(C), pages 601-612.
    9. Wang, Zhifeng & Wu, Jiani & Lei, Dongqiang & Liu, Hong & Li, Jinping & Wu, Zhiyong, 2020. "Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application," Applied Energy, Elsevier, vol. 261(C).
    10. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2018. "Cyclic performance of cascaded and multi-layered solid-PCM shell-and-tube thermal energy storage systems: A case study of the 19.9 MWe Gemasolar CSP plant," Applied Energy, Elsevier, vol. 228(C), pages 240-253.
    11. Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
    12. Osorio, J.D. & Rivera-Alvarez, A. & Swain, M. & Ordonez, J.C., 2015. "Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction," Applied Energy, Elsevier, vol. 154(C), pages 333-343.
    13. Li, Gang & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Review of cold storage materials for subzero applications," Energy, Elsevier, vol. 51(C), pages 1-17.
    14. Lin, Wenye & Ma, Zhenjun & Ren, Haoshan & Gschwander, Stefan & Wang, Shugang, 2019. "Multi-objective optimisation of thermal energy storage using phase change materials for solar air systems," Renewable Energy, Elsevier, vol. 130(C), pages 1116-1129.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pantano, Fabio & Capata, Roberto, 2017. "Expander selection for an on board ORC energy recovery system," Energy, Elsevier, vol. 141(C), pages 1084-1096.
    2. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    3. Yan, J. & Zhao, C.Y. & Pan, Z.H., 2017. "The effect of CO2 on Ca(OH)2 and Mg(OH)2 thermochemical heat storage systems," Energy, Elsevier, vol. 124(C), pages 114-123.
    4. Carro, A. & Chacartegui, R. & Ortiz, C. & Carneiro, J. & Becerra, J.A., 2022. "Integration of energy storage systems based on transcritical CO2: Concept of CO2 based electrothermal energy and geological storage," Energy, Elsevier, vol. 238(PA).
    5. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Osorio, J.D. & Rivera-Alvarez, A. & Swain, M. & Ordonez, J.C., 2015. "Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction," Applied Energy, Elsevier, vol. 154(C), pages 333-343.
    7. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    8. Liu, Sijia & Winter, Michaela & Lewerenz, Meinert & Becker, Jan & Sauer, Dirk Uwe & Ma, Zeyu & Jiang, Jiuchun, 2019. "Analysis of cyclic aging performance of commercial Li4Ti5O12-based batteries at room temperature," Energy, Elsevier, vol. 173(C), pages 1041-1053.
    9. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    10. Biglarian, Hassan & Abbaspour, Madjid & Saidi, Mohammad Hassan, 2018. "Evaluation of a transient borehole heat exchanger model in dynamic simulation of a ground source heat pump system," Energy, Elsevier, vol. 147(C), pages 81-93.
    11. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
    12. Huang, Xinyu & Li, Ze & Xie, Yuan & Gao, Jiayi & Yang, Xiaohu & Li, Ming-Jia, 2024. "Phase change heat storage and enhanced heat transfer based on metal foam under unsteady rotation conditions," Energy, Elsevier, vol. 306(C).
    13. Zeng, Qingshun & Shi, Changfeng & Zhu, Wenjun & Zhi, Jiaqi & Na, Xiaohong, 2023. "Sequential data-driven carbon peaking path simulation research of the Yangtze River Delta urban agglomeration based on semantic mining and heuristic algorithm optimization," Energy, Elsevier, vol. 285(C).
    14. Wang, Zhenfeng & Xu, Guangyin & Lin, Ruojue & Wang, Heng & Ren, Jingzheng, 2019. "Energy performance contracting, risk factors, and policy implications: Identification and analysis of risks based on the best-worst network method," Energy, Elsevier, vol. 170(C), pages 1-13.
    15. Chanda, Sourayon & Tsai, Peichun Amy, 2019. "Numerical simulation of renewable power generation using reverse electrodialysis," Energy, Elsevier, vol. 176(C), pages 531-543.
    16. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
    17. Pakrouh, R. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2017. "Thermodynamic analysis of a packed bed latent heat thermal storage system simulated by an effective packed bed model," Energy, Elsevier, vol. 140(P1), pages 861-878.
    18. Li, Gang & Qian, Suxin & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application," Energy, Elsevier, vol. 65(C), pages 675-691.
    19. Gasia, Jaume & de Gracia, Alvaro & Zsembinszki, Gabriel & Cabeza, Luisa F., 2019. "Influence of the storage period between charge and discharge in a latent heat thermal energy storage system working under partial load operating conditions," Applied Energy, Elsevier, vol. 235(C), pages 1389-1399.
    20. Yunshen Zhang & Yun Guo & Jiaao Zhu & Weijian Yuan & Feng Zhao, 2024. "New Advances in Materials, Applications, and Design Optimization of Thermocline Heat Storage: Comprehensive Review," Energies, MDPI, vol. 17(10), pages 1-41, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s036054422100133x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.