IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v147y2018icp81-93.html
   My bibliography  Save this article

Evaluation of a transient borehole heat exchanger model in dynamic simulation of a ground source heat pump system

Author

Listed:
  • Biglarian, Hassan
  • Abbaspour, Madjid
  • Saidi, Mohammad Hassan

Abstract

The performance of a vertical ground source heat pump system (GSHPS) largely depends on the fluid temperature leaving the borehole heat exchanger (BHE) that may be affected by the short-term behavior of the BHE. Although considerable research has been carried out to analyze the short-term transient response of the BHEs, few studies have investigated its impact on dynamic simulation of GSHPS. Therefore, this paper presents a numerical approach based on a transient BHE model to evaluate the performance of a residential GSHPS over short and long timescales. The numerical results are compared with the results of EnergyPlus software. It is shown that the proposed model can appropriately predict the dynamic behavior of the system. Moreover, effect of borehole thermal capacity on the performance of the GSHPS is investigated in comparison with a quasi-steady state model. It is found that including the borehole thermal capacity substantially affects the design borehole length. Using the transient model instead of the quasi-steady state model leads to a 16% reduction in the required borehole length.

Suggested Citation

  • Biglarian, Hassan & Abbaspour, Madjid & Saidi, Mohammad Hassan, 2018. "Evaluation of a transient borehole heat exchanger model in dynamic simulation of a ground source heat pump system," Energy, Elsevier, vol. 147(C), pages 81-93.
  • Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:81-93
    DOI: 10.1016/j.energy.2018.01.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218300379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Gang & Zheng, Xuefei, 2016. "Thermal energy storage system integration forms for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 736-757.
    2. Pasquier, Philippe & Marcotte, Denis, 2012. "Short-term simulation of ground heat exchanger with an improved TRCM," Renewable Energy, Elsevier, vol. 46(C), pages 92-99.
    3. Ma, WeiWu & Li, Min & Li, Ping & Lai, Alvin C.K., 2015. "New quasi-3D model for heat transfer in U-shaped GHEs (ground heat exchangers): Effective overall thermal resistance," Energy, Elsevier, vol. 90(P1), pages 578-587.
    4. Zarrella, Angelo & Scarpa, Massimiliano & De Carli, Michele, 2011. "Short time step analysis of vertical ground-coupled heat exchangers: The approach of CaRM," Renewable Energy, Elsevier, vol. 36(9), pages 2357-2367.
    5. Li, Min & Lai, Alvin C.K., 2013. "Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation," Applied Energy, Elsevier, vol. 104(C), pages 510-516.
    6. Rees, Simon J., 2015. "An extended two-dimensional borehole heat exchanger model for simulation of short and medium timescale thermal response," Renewable Energy, Elsevier, vol. 83(C), pages 518-526.
    7. Pärisch, Peter & Mercker, Oliver & Oberdorfer, Phillip & Bertram, Erik & Tepe, Rainer & Rockendorf, Gunter, 2015. "Short-term experiments with borehole heat exchangers and model validation in TRNSYS," Renewable Energy, Elsevier, vol. 74(C), pages 471-477.
    8. Kim, Eui-Jong & Bernier, Michel & Cauret, Odile & Roux, Jean-Jacques, 2014. "A hybrid reduced model for borehole heat exchangers over different time-scales and regions," Energy, Elsevier, vol. 77(C), pages 318-326.
    9. Li, Gang, 2015. "Energy and exergy performance assessments for latent heat thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 926-954.
    10. Montagud, Carla & Corberán, José Miguel & Ruiz-Calvo, Félix, 2013. "Experimental and modeling analysis of a ground source heat pump system," Applied Energy, Elsevier, vol. 109(C), pages 328-336.
    11. Villarino, José Ignacio & Villarino, Alberto & Fernández, Francisco Ángel, 2017. "Experimental and modelling analysis of an office building HVAC system based in a ground-coupled heat pump and radiant floor," Applied Energy, Elsevier, vol. 190(C), pages 1020-1028.
    12. Li, Gang, 2016. "Sensible heat thermal storage energy and exergy performance evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 897-923.
    13. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    14. Sebarchievici, Calin & Sarbu, Ioan, 2015. "Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation," Renewable Energy, Elsevier, vol. 76(C), pages 148-159.
    15. Biglarian, Hassan & Abbaspour, Madjid & Saidi, Mohammad Hassan, 2017. "A numerical model for transient simulation of borehole heat exchangers," Renewable Energy, Elsevier, vol. 104(C), pages 224-237.
    16. Lyu, Zehao & Song, Xianzhi & Li, Gensheng & Hu, Xiaodong & Shi, Yu & Xu, Zhipeng, 2017. "Numerical analysis of characteristics of a single U-tube downhole heat exchanger in the borehole for geothermal wells," Energy, Elsevier, vol. 125(C), pages 186-196.
    17. Maestre, Ismael Rodríguez & Gallero, Francisco Javier González & Gómez, Pascual Álvarez & Pérez-Lombard, Luis, 2015. "A new RC and g-function hybrid model to simulate vertical ground heat exchangers," Renewable Energy, Elsevier, vol. 78(C), pages 631-642.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Bobbo & Laura Fedele & Marco Curcio & Anna Bet & Michele De Carli & Giuseppe Emmi & Fabio Poletto & Andrea Tarabotti & Dimitris Mendrinos & Giulia Mezzasalma & Adriana Bernardi, 2019. "Energetic and Exergetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A in Ground Source Heat Pumps," Energies, MDPI, vol. 12(18), pages 1-16, September.
    2. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Liu, Xin & Zuo, Yuning & Yin, Zekai & Liang, Chuanzhi & Feng, Guohui & Yang, Xiaodan, 2023. "Research on an evaluation system of the application effect of ground source heat pump systems for green buildings in China," Energy, Elsevier, vol. 262(PA).
    4. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    5. Laura Carnieletto & Borja Badenes & Marco Belliardi & Adriana Bernardi & Samantha Graci & Giuseppe Emmi & Javier F. Urchueguía & Angelo Zarrella & Antonino Di Bella & Giorgia Dalla Santa & Antonio Gal, 2019. "A European Database of Building Energy Profiles to Support the Design of Ground Source Heat Pumps," Energies, MDPI, vol. 12(13), pages 1-23, June.
    6. Biglarian, Hassan & Abdollahi, Sina, 2022. "Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump," Energy, Elsevier, vol. 243(C).
    7. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Wang, Zhu & Yan, Junjie, 2018. "Thermodynamics analysis on a heat exchanger unit during the transient processes based on the second law," Energy, Elsevier, vol. 165(PB), pages 622-633.
    8. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    9. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    10. Ge, Yi & Han, Jitian & Ma, Qingzhao & Feng, Jiahui, 2022. "Optimal configuration and operation analysis of solar-assisted natural gas distributed energy system with energy storage," Energy, Elsevier, vol. 246(C).
    11. Zhi, Chengqiang & Yang, Xiuqin & Zhou, Xiang & Tu, Shuyang & Zhang, Xu, 2022. "A revised sizing method for borehole heat exchangers in the Chinese national standard based on reliability and economy," Renewable Energy, Elsevier, vol. 191(C), pages 17-29.
    12. Bi, Yuehong & Lyu, Tianli & Wang, Hongyan & Sun, Ruirui & Yu, Meize, 2019. "Parameter analysis of single U-tube GHE and dynamic simulation of underground temperature field round one year for GSHP," Energy, Elsevier, vol. 174(C), pages 138-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    3. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    4. Biglarian, Hassan & Abbaspour, Madjid & Saidi, Mohammad Hassan, 2017. "A numerical model for transient simulation of borehole heat exchangers," Renewable Energy, Elsevier, vol. 104(C), pages 224-237.
    5. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    6. Claudia Naldi & Aminhossein Jahanbin & Enzo Zanchini, 2021. "A New Estimate of Sand and Grout Thermal Properties in the Sandbox Experiment for Accurate Validations of Borehole Simulation Codes," Energies, MDPI, vol. 14(4), pages 1-25, February.
    7. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    8. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.
    9. Liu, Sijia & Winter, Michaela & Lewerenz, Meinert & Becker, Jan & Sauer, Dirk Uwe & Ma, Zeyu & Jiang, Jiuchun, 2019. "Analysis of cyclic aging performance of commercial Li4Ti5O12-based batteries at room temperature," Energy, Elsevier, vol. 173(C), pages 1041-1053.
    10. Maestre, Ismael Rodríguez & Gallero, Francisco Javier González & Gómez, Pascual Álvarez & Pérez-Lombard, Luis, 2015. "A new RC and g-function hybrid model to simulate vertical ground heat exchangers," Renewable Energy, Elsevier, vol. 78(C), pages 631-642.
    11. Claudia Naldi & Enzo Zanchini, 2019. "Full-Time-Scale Fluid-to-Ground Thermal Response of a Borefield with Uniform Fluid Temperature," Energies, MDPI, vol. 12(19), pages 1-18, September.
    12. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    13. Zeng, Qingshun & Shi, Changfeng & Zhu, Wenjun & Zhi, Jiaqi & Na, Xiaohong, 2023. "Sequential data-driven carbon peaking path simulation research of the Yangtze River Delta urban agglomeration based on semantic mining and heuristic algorithm optimization," Energy, Elsevier, vol. 285(C).
    14. Wang, Zhenfeng & Xu, Guangyin & Lin, Ruojue & Wang, Heng & Ren, Jingzheng, 2019. "Energy performance contracting, risk factors, and policy implications: Identification and analysis of risks based on the best-worst network method," Energy, Elsevier, vol. 170(C), pages 1-13.
    15. Jia, G.S. & Ma, Z.D. & Xia, Z.H. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Investigation of the horizontally-butted borehole heat exchanger based on a semi-analytical method considering groundwater seepage and geothermal gradient," Renewable Energy, Elsevier, vol. 171(C), pages 447-461.
    16. Pantano, Fabio & Capata, Roberto, 2017. "Expander selection for an on board ORC energy recovery system," Energy, Elsevier, vol. 141(C), pages 1084-1096.
    17. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    18. Cimmino, Massimo, 2016. "Fluid and borehole wall temperature profiles in vertical geothermal boreholes with multiple U-tubes," Renewable Energy, Elsevier, vol. 96(PA), pages 137-147.
    19. Ikeda, Shintaro & Choi, Wonjun & Ooka, Ryozo, 2017. "Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature," Applied Energy, Elsevier, vol. 193(C), pages 466-478.
    20. Matt S. Mitchell & Jeffrey D. Spitler, 2020. "An Enhanced Vertical Ground Heat Exchanger Model for Whole-Building Energy Simulation," Energies, MDPI, vol. 13(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:81-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.