IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v145y2015icp331-344.html
   My bibliography  Save this article

Irreversible processes and performance improvement of desiccant wheel dehumidification and cooling systems using exergy

Author

Listed:
  • Tu, Rang
  • Liu, Xiao-Hua
  • Jiang, Yi

Abstract

Desiccant wheels are effective dehumidification devices. The performance of desiccant dehumidification and cooling systems is examined in this paper. Based on a theoretical investigation, six kinds of systems (systems A–F) were analyzed as the system changed from being reversible to being irreversible, which sharply reduced performance. The performance of system E, which is composed of an actual desiccant wheel, an actual heat recovery exchanger, and an actual single-stage heat pump, represents the relatively high standards that actual systems can achieve. Under the designed working conditions, COP and exergy efficiency of system E were 5.0 and 18.3%, respectively. Based on the analysis of a real ventilation cycle, it was found that to improve the system’s performance, over-dehumidification should be avoided, and heat sources with low exergy destruction should be utilized. To avoid over-dehumidification, the direct evaporative cooler at the processed air side should be replaced by a sensible heat exchanger. When the electrical heater is replaced by a heat pump system, the performance of such a system can be improved, especially when pre-cooling is adopted. The proposed heat pump-driven system had similar schematic and performance characteristics as system E, with COP and exergy efficiency being 5.01 and 18.0%, respectively, under the same working conditions.

Suggested Citation

  • Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2015. "Irreversible processes and performance improvement of desiccant wheel dehumidification and cooling systems using exergy," Applied Energy, Elsevier, vol. 145(C), pages 331-344.
  • Handle: RePEc:eee:appene:v:145:y:2015:i:c:p:331-344
    DOI: 10.1016/j.apenergy.2015.02.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
    2. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    3. Enteria, Napoleon & Yoshino, Hiroshi & Satake, Akira & Mochida, Akashi & Takaki, Rie & Yoshie, Ryuichiro & Baba, Seizo, 2010. "Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production," Applied Energy, Elsevier, vol. 87(2), pages 478-486, February.
    4. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
    5. Angrisani, Giovanni & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2012. "Experimental analysis on the dehumidification and thermal performance of a desiccant wheel," Applied Energy, Elsevier, vol. 92(C), pages 563-572.
    6. Angrisani, Giovanni & Capozzoli, Alfonso & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2011. "Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances," Applied Energy, Elsevier, vol. 88(4), pages 1354-1365, April.
    7. Babus'Haq, R. F. & Olsen, H. & Probert, S. D., 1996. "Feasibility of using an integrated small-scale CHP unit plus desiccant wheel in a leisure complex," Applied Energy, Elsevier, vol. 53(1-2), pages 179-192.
    8. Zhang, Weijiang & Yao, Ye & He, Beixing & Wang, Rongshun, 2011. "The energy-saving characteristic of silica gel regeneration with high-intensity ultrasound," Applied Energy, Elsevier, vol. 88(6), pages 2146-2156, June.
    9. La, D. & Dai, Y.J. & Li, Y. & Tang, Z.Y. & Ge, T.S. & Wang, R.Z., 2013. "An experimental investigation on the integration of two-stage dehumidification and regenerative evaporative cooling," Applied Energy, Elsevier, vol. 102(C), pages 1218-1228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abou-Ziyan, H. & Abd El-Raheim, D. & Mahmoud, O. & Fatouh, M., 2017. "Performance characteristics of thin-multilayer activated alumina bed," Applied Energy, Elsevier, vol. 190(C), pages 29-42.
    2. Mei, Jun & Xia, Xiaohua, 2017. "Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 195(C), pages 439-452.
    3. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    4. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Çerçi, Kamil Neyfel & Oliveira Silva, Ivo Rafael & Hooman, Kamel, 2024. "Investigation of the energetic and exergetic performance of hybrid rotary desiccant-vapor compression cooling systems using different refrigerants," Energy, Elsevier, vol. 302(C).
    6. Prek, Matjaž & Butala, Vincenc, 2017. "Comparison between Fanger's thermal comfort model and human exergy loss," Energy, Elsevier, vol. 138(C), pages 228-237.
    7. Li, Jiaqi & Tu, Rang & Liu, Mengdan & Wang, Siqi, 2021. "Exergy analysis of a novel multi-stage latent heat storage device based on uniformity of temperature differences fields," Energy, Elsevier, vol. 221(C).
    8. Fu, Huang-Xi & Zhang, Li-Zhi & Xu, Jian-Chang & Cai, Rong-Rong, 2016. "A dual-scale analysis of a desiccant wheel with a novel organic–inorganic hybrid adsorbent for energy recovery," Applied Energy, Elsevier, vol. 163(C), pages 167-179.
    9. Cao, Bowen & Yin, Yonggao & Xu, Guoying & Cheng, Xiaosong & Li, Wenzhang & Ji, Qiang & Chen, Wanhe, 2023. "A proposed method of bubble absorption-based deep dehumidification using the ionic liquid for low-humidity industrial environments with experimental performance," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
    2. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    3. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    4. La, D. & Dai, Y.J. & Li, Y. & Tang, Z.Y. & Ge, T.S. & Wang, R.Z., 2013. "An experimental investigation on the integration of two-stage dehumidification and regenerative evaporative cooling," Applied Energy, Elsevier, vol. 102(C), pages 1218-1228.
    5. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2013. "Effect of rotational speed on the performances of a desiccant wheel," Applied Energy, Elsevier, vol. 104(C), pages 268-275.
    6. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Angrisani, Giovanni & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2012. "Experimental analysis on the dehumidification and thermal performance of a desiccant wheel," Applied Energy, Elsevier, vol. 92(C), pages 563-572.
    8. Giovanni Angrisani & Carlo Roselli & Maurizio Sasso & Francesco Tariello & Giuseppe Peter Vanoli, 2016. "Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios," Energies, MDPI, vol. 9(9), pages 1-24, September.
    9. Zhou, Xingchao & Goldsworthy, Mark & Sproul, Alistair, 2018. "Performance investigation of an internally cooled desiccant wheel," Applied Energy, Elsevier, vol. 224(C), pages 382-397.
    10. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    11. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    12. Kang, Hyungmook & Lee, Dae-Young, 2017. "Experimental investigation and introduction of a similarity parameter for characterizing the heat and mass transfer in polymer desiccant wheels," Energy, Elsevier, vol. 120(C), pages 705-717.
    13. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi & Ma, Fei, 2015. "Influence of the number of stages on the heat source temperature of desiccant wheel dehumidification systems using exergy analysis," Energy, Elsevier, vol. 85(C), pages 379-391.
    14. Abou-Ziyan, H. & Abd El-Raheim, D. & Mahmoud, O. & Fatouh, M., 2017. "Performance characteristics of thin-multilayer activated alumina bed," Applied Energy, Elsevier, vol. 190(C), pages 29-42.
    15. Ruivo, Celestino R. & Angrisani, Giovanni & Minichiello, Francesco, 2015. "Influence of the rotation speed on the effectiveness parameters of a desiccant wheel: An assessment using experimental data and manufacturer software," Renewable Energy, Elsevier, vol. 76(C), pages 484-493.
    16. Chen, Liu & Tan, Yikun, 2020. "The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source," Renewable Energy, Elsevier, vol. 146(C), pages 2142-2157.
    17. Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2014. "Review on solar powered rotary desiccant wheel cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 476-497.
    18. Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
    19. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    20. Ruivo, Celestino R. & Goldsworthy, Mark & Intini, Manuel, 2014. "Interpolation methods to predict the influence of inlet airflow states on desiccant wheel performance at low regeneration temperature," Energy, Elsevier, vol. 68(C), pages 765-772.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:145:y:2015:i:c:p:331-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.