IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip1p861-878.html
   My bibliography  Save this article

Thermodynamic analysis of a packed bed latent heat thermal storage system simulated by an effective packed bed model

Author

Listed:
  • Pakrouh, R.
  • Hosseini, M.J.
  • Ranjbar, A.A.
  • Bahrampoury, R.

Abstract

The present paper numerically investigates the performance of latent heat storage systems during solidification, which involves phase change material (PCM) capsules. Paraffin wax is considered as the PCM and water plays the role of heat transfer fluid (HTF). The simulation is conducted for two inlet temperatures, 30 °C and 40 °C, while the capsules' diameter varies in the range of 10 mm–60 mm. Among various existing models, the effective packed bed model which is not only able to provide temperature gradient data but also is capable of reporting entropy generation details. Results indicated that both reduction in capsules' diameter and the HTF inlet temperature unfavorably increase the amount of the system's irreversibility. However, it is demonstrated that the increase in the irreversibility does not essentially result in a reduction in performance of the latent heat storage system. In other words, the efficiency of the storage system is not a pure function of entropy generation number. In fact, the reduction in the diameter results in an improve in the second low efficiency while the inlet temperature reduction diminishes the efficiency. Results also implies that decisive parameters vary significantly only when the diameter reduces to 20 mm and further reduction doesn't affect the system performance noticeably.

Suggested Citation

  • Pakrouh, R. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2017. "Thermodynamic analysis of a packed bed latent heat thermal storage system simulated by an effective packed bed model," Energy, Elsevier, vol. 140(P1), pages 861-878.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:861-878
    DOI: 10.1016/j.energy.2017.08.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, Pedro D. & Gonçalves, L. C. & Pires, L., 2002. "Transient behaviour of a latent-heat thermal-energy store: numerical and experimental studies," Applied Energy, Elsevier, vol. 73(1), pages 83-98, September.
    2. Li, Gang, 2015. "Energy and exergy performance assessments for latent heat thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 926-954.
    3. Kheradmand, Mohammad & Azenha, Miguel & de Aguiar, José L.B. & Castro-Gomes, João, 2016. "Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings," Energy, Elsevier, vol. 94(C), pages 250-261.
    4. Lu, Xiaochen & Ma, Rong & Wang, Chao & Yao, Wei, 2016. "Performance analysis of a lunar based solar thermal power system with regolith thermal storage," Energy, Elsevier, vol. 107(C), pages 227-233.
    5. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
    6. Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
    7. MacPhee, David & Dincer, Ibrahim & Beyene, Asfaw, 2012. "Numerical simulation and exergetic performance assessment of charging process in encapsulated ice thermal energy storage system," Energy, Elsevier, vol. 41(1), pages 491-498.
    8. Guelpa, Elisa & Sciacovelli, Adriano & Verda, Vittorio, 2013. "Entropy generation analysis for the design improvement of a latent heat storage system," Energy, Elsevier, vol. 53(C), pages 128-138.
    9. Li, Qiyuan & Tehrani, S. Saeed Mostafavi & Taylor, Robert A., 2017. "Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage," Energy, Elsevier, vol. 121(C), pages 220-237.
    10. Zhang, Suling & Wu, Wei & Wang, Shuangfeng, 2017. "Integration highly concentrated photovoltaic module exhaust heat recovery system with adsorption air-conditioning module via phase change materials," Energy, Elsevier, vol. 118(C), pages 1187-1197.
    11. Xia, L. & Zhang, P. & Wang, R.Z., 2010. "Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model," Energy, Elsevier, vol. 35(5), pages 2022-2032.
    12. Mosaffa, A.H. & Garousi Farshi, L., 2016. "Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 515-526.
    13. Nallusamy, N. & Sampath, S. & Velraj, R., 2007. "Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources," Renewable Energy, Elsevier, vol. 32(7), pages 1206-1227.
    14. Rezaie, Behnaz & Reddy, Bale V. & Rosen, Marc A., 2015. "Exergy analysis of thermal energy storage in a district energy application," Renewable Energy, Elsevier, vol. 74(C), pages 848-854.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2023. "Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe," Energy, Elsevier, vol. 275(C).
    2. Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
    3. Ge, Y.Q. & Zhao, Y. & Zhao, C.Y., 2021. "Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores," Renewable Energy, Elsevier, vol. 174(C), pages 939-951.
    4. Wang, Yongli & Li, Ruiwen & Dong, Huanran & Ma, Yuze & Yang, Jiale & Zhang, Fuwei & Zhu, Jinrong & Li, Shuqing, 2019. "Capacity planning and optimization of business park-level integrated energy system based on investment constraints," Energy, Elsevier, vol. 189(C).
    5. Tian, Lei & Wang, Jiangjiang & Zhao, Lei & Wei, Changqi, 2023. "Unsteady-state thermal performance analysis of cascaded packed-bed latent thermal storage in solar heating system," Energy, Elsevier, vol. 272(C).
    6. Jeroen Mol & Mina Shahi & Amirhoushang Mahmoudi, 2020. "Numerical Modeling of Thermal Storage Performance of Encapsulated PCM Particles in an Unstructured Packed Bed," Energies, MDPI, vol. 13(23), pages 1-16, December.
    7. Gao, Long & Gegentana, & Liu, Zhongze & Sun, Baizhong & Che, Deyong & Li, Shaohua, 2020. "Multi-objective optimization of thermal performance of packed bed latent heat thermal storage system based on response surface method," Renewable Energy, Elsevier, vol. 153(C), pages 669-680.
    8. Pop, Octavian G. & Fechete Tutunaru, Lucian & Bode, Florin & Abrudan, Ancuţa C. & Balan, Mugur C., 2018. "Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions," Applied Energy, Elsevier, vol. 212(C), pages 976-996.
    9. Xu, Tianhao & Humire, Emma Nyholm & Chiu, Justin Ning-Wei & Sawalha, Samer, 2020. "Numerical thermal performance investigation of a latent heat storage prototype toward effective use in residential heating systems," Applied Energy, Elsevier, vol. 278(C).
    10. Mao, Qianjun & Cao, Wenlong, 2023. "Effect of variable capsule size on energy storage performances in a high-temperature three-layered packed bed system," Energy, Elsevier, vol. 273(C).
    11. Ebrahimi, A. & Hosseini, M.J. & Ranjbar, A.A. & Rahimi, M. & Bahrampoury, R., 2019. "Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe," Renewable Energy, Elsevier, vol. 138(C), pages 378-394.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiqian Guo & ELSaeed Saad ELSihy & Zhirong Liao & Xiaoze Du, 2021. "A Comparative Study on the Performance of Single and Multi-Layer Encapsulated Phase Change Material Packed-Bed Thermocline Tanks," Energies, MDPI, vol. 14(8), pages 1-24, April.
    2. Li, Gang, 2015. "Energy and exergy performance assessments for latent heat thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 926-954.
    3. David W. MacPhee & Mustafa Erguvan, 2020. "Thermodynamic Analysis of a High-Temperature Latent Heat Thermal Energy Storage System," Energies, MDPI, vol. 13(24), pages 1-19, December.
    4. Wang, C. & Zhu, Y., 2018. "Entransy analysis on optimization of a double-stage latent heat storage unit with the consideration of an unequal separation," Energy, Elsevier, vol. 148(C), pages 386-396.
    5. ELSihy, ELSaeed Saad & Mokhtar, Omar & Xu, Chao & Du, Xiaoze & Adel, Mohamed, 2023. "Cyclic performance characterization of a high-temperature thermal energy storage system packed with rock/slag pebbles granules combined with encapsulated phase change materials," Applied Energy, Elsevier, vol. 331(C).
    6. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. ELSihy, ELSaeed Saad & Cai, Changrui & Li, Zhenpeng & Du, Xiaoze & Wang, Zuyuan, 2024. "Performance investigation on the cascaded packed bed thermal energy storage system with encapsulated nano-enhanced phase change materials for high-temperature applications," Energy, Elsevier, vol. 293(C).
    8. Kalapala, Lokesh & Devanuri, Jaya Krishna, 2020. "Energy and exergy analyses of latent heat storage unit positioned at different orientations – An experimental study," Energy, Elsevier, vol. 194(C).
    9. Mao, Qianjun & Zhang, Yamei, 2020. "Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system," Renewable Energy, Elsevier, vol. 152(C), pages 110-119.
    10. Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
    11. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    12. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    13. Parameshwaran, R. & Kalaiselvam, S., 2013. "Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings," Energy, Elsevier, vol. 59(C), pages 194-214.
    14. Shahsavar, Amin & Majidzadeh, Amir Hossein & Mahani, Roohollah Babaei & Talebizadehsardari, Pouyan, 2021. "Entropy and thermal performance analysis of PCM melting and solidification mechanisms in a wavy channel triplex-tube heat exchanger," Renewable Energy, Elsevier, vol. 165(P2), pages 52-72.
    15. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Diarce, Gonzalo & Taylor, Robert A., 2019. "An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems," Renewable Energy, Elsevier, vol. 132(C), pages 694-708.
    16. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    17. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    18. Bose, Prabhu & Amirtham, Valan Arasu, 2016. "A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 81-100.
    19. Hu, Xiao & Zhang, Heng & Chen, Dongwen & Li, Yong & Wang, Li & Zhang, Feng & Cheng, Haozhong, 2020. "Multi-objective planning for integrated energy systems considering both exergy efficiency and economy," Energy, Elsevier, vol. 197(C).
    20. Manfrida, Giampaolo & Secchi, Riccardo & Stańczyk, Kamil, 2016. "Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle," Applied Energy, Elsevier, vol. 179(C), pages 378-388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:861-878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.