We got the power: Predicting available capacity for vehicle-to-grid services using a deep recurrent neural network
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.119813
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
- Yang, Qingqing & Li, Jianwei & Cao, Wanke & Li, Shuangqi & Lin, Jie & Huo, Da & He, Hongwen, 2020. "An improved vehicle to the grid method with battery longevity management in a microgrid application," Energy, Elsevier, vol. 198(C).
- Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
- Rob Shipman & Julie Waldron & Sophie Naylor & James Pinchin & Lucelia Rodrigues & Mark Gillott, 2020. "Where Will You Park? Predicting Vehicle Locations for Vehicle-to-Grid," Energies, MDPI, vol. 13(8), pages 1-15, April.
- Uddin, Kotub & Dubarry, Matthieu & Glick, Mark B., 2018. "The viability of vehicle-to-grid operations from a battery technology and policy perspective," Energy Policy, Elsevier, vol. 113(C), pages 342-347.
- Uddin, Kotub & Gough, Rebecca & Radcliffe, Jonathan & Marco, James & Jennings, Paul, 2017. "Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom," Applied Energy, Elsevier, vol. 206(C), pages 12-21.
- Uddin, Kotub & Jackson, Tim & Widanage, Widanalage D. & Chouchelamane, Gael & Jennings, Paul A. & Marco, James, 2017. "On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system," Energy, Elsevier, vol. 133(C), pages 710-722.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rob Shipman & Rebecca Roberts & Julie Waldron & Chris Rimmer & Lucelia Rodrigues & Mark Gillott, 2021. "Online Machine Learning of Available Capacity for Vehicle-to-Grid Services during the Coronavirus Pandemic," Energies, MDPI, vol. 14(21), pages 1-16, November.
- Qin Chen & Komla Agbenyo Folly, 2022. "Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A Review," Energies, MDPI, vol. 16(1), pages 1-26, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
- Kobashi, Takuro & Yoshida, Takahiro & Yamagata, Yoshiki & Naito, Katsuhiko & Pfenninger, Stefan & Say, Kelvin & Takeda, Yasuhiro & Ahl, Amanda & Yarime, Masaru & Hara, Keishiro, 2020. "On the potential of “Photovoltaics + Electric vehicles” for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations," Applied Energy, Elsevier, vol. 275(C).
- Ruben Garruto & Michela Longo & Wahiba Yaïci & Federica Foiadelli, 2020. "Connecting Parking Facilities to the Electric Grid: A Vehicle-to-Grid Feasibility Study in a Railway Station’s Car Park," Energies, MDPI, vol. 13(12), pages 1-23, June.
- Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
- Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
- Rob Shipman & Rebecca Roberts & Julie Waldron & Chris Rimmer & Lucelia Rodrigues & Mark Gillott, 2021. "Online Machine Learning of Available Capacity for Vehicle-to-Grid Services during the Coronavirus Pandemic," Energies, MDPI, vol. 14(21), pages 1-16, November.
- Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Thompson, Andrew W. & Perez, Yannick, 2020.
"Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications,"
Energy Policy, Elsevier, vol. 137(C).
- Andrew Thompson & Yannick Perez, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Post-Print halshs-02860026, HAL.
- Earl, James & Fell, Michael J., 2019. "Electric vehicle manufacturers' perceptions of the market potential for demand-side flexibility using electric vehicles in the United Kingdom," Energy Policy, Elsevier, vol. 129(C), pages 646-652.
- George Baure & Matthieu Dubarry, 2020. "Durability and Reliability of EV Batteries under Electric Utility Grid Operations: Impact of Frequency Regulation Usage on Cell Degradation," Energies, MDPI, vol. 13(10), pages 1-11, May.
- Stef Proost & Mads Greaker & Cathrine Hagem, 2019. "Vehicle-to-Grid. Impacts on the electricity market and consumer cost of electric vehicles," Discussion Papers 903, Statistics Norway, Research Department.
- Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
- Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A. & Russo, G., 2023. "The role of energy communities in electricity grid balancing: A flexible tool for smart grid power distribution optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Cheng, Gong & Wang, Xinzhi & He, Yurong, 2021. "Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network," Energy, Elsevier, vol. 232(C).
- Yumiko Iwafune & Kazuhiko Ogimoto, 2020. "Economic Impacts of the Demand Response of Electric Vehicles Considering Battery Degradation," Energies, MDPI, vol. 13(21), pages 1-19, November.
- Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.
- Jungho Lim & Sung-Eun Lee & Kwang-Yong Park & Hee-Soo Kim & Jin-Hyeok Choi, 2021. "VxG Pattern-Based Analysis and Battery Deterioration Diagnosis," Energies, MDPI, vol. 14(17), pages 1-12, August.
- Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling the Performance of an Electric Vehicle Considering Various Driving Cycles," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
- Uddin, Kotub & Dubarry, Matthieu & Glick, Mark B., 2018. "The viability of vehicle-to-grid operations from a battery technology and policy perspective," Energy Policy, Elsevier, vol. 113(C), pages 342-347.
More about this item
Keywords
Vehicle-to-grid; V2G; Deep learning; CNN-LSTM network; Machine learning; Neural networks;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000621. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.