IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220320764.html
   My bibliography  Save this article

Use of Pressure-Retarded-Osmosis to reduce Reverse Osmosis energy consumption by exploiting hypersaline flows

Author

Listed:
  • Bargiacchi, Eleonora
  • Orciuolo, Francesco
  • Ferrari, Lorenzo
  • Desideri, Umberto

Abstract

Power production from salinity gradients, the so-called Pressure Retarded Osmosis (PRO), has been actively investigated and tested since the 70s for its reliability and controllability. Besides these advantages, it seems a promising green solution since it allows the dilution of highly concentrated brines and the specific energy consumption of desalination plants. Most of PRO applications, though, use freshwater as feed solution, which in some locations may be scarce or dedicated to other uses. In the present paper, PRO is researched for hypersaline solutions (brine and seawater), and a sensitivity analysis is carried out over the most significant parameters that affect the system performance: draw and feed velocities, hydrostatic pressure-osmotic pressure difference ratio and membrane length. The PRO model is then coupled to a simplified Reverse Osmosis (RO) plant into two novel integrated desalination plant layouts to quantify the PRO impact on the specific energy consumption. The two layouts are simulated with both a commercial and an experimental membrane, with a view to membrane technology improvement.

Suggested Citation

  • Bargiacchi, Eleonora & Orciuolo, Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2020. "Use of Pressure-Retarded-Osmosis to reduce Reverse Osmosis energy consumption by exploiting hypersaline flows," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220320764
    DOI: 10.1016/j.energy.2020.118969
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220320764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Minseok & Kim, Suhan, 2018. "Practical limit of energy production from seawater by full-scale pressure retarded osmosis," Energy, Elsevier, vol. 158(C), pages 373-382.
    2. Jaber, J. O. & Probert, S. D. & Badr, O., 1997. "Water scarcity: A fundamental crisis for Jordan," Applied Energy, Elsevier, vol. 57(2-3), pages 103-127, June.
    3. Naguib, Maged Fouad & Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2015. "Modeling pressure-retarded osmotic power in commercial length membranes," Renewable Energy, Elsevier, vol. 76(C), pages 619-627.
    4. Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2016. "Experimental investigation of pressure retarded osmosis for renewable energy conversion: Towards increased net power," Applied Energy, Elsevier, vol. 164(C), pages 425-435.
    5. Altaee, Ali & Millar, Graeme J. & Zaragoza, Guillermo, 2016. "Integration and optimization of pressure retarded osmosis with reverse osmosis for power generation and high efficiency desalination," Energy, Elsevier, vol. 103(C), pages 110-118.
    6. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2018. "A continuous concentration gradient flow electrical energy storage system based on reverse osmosis and pressure retarded osmosis," Energy, Elsevier, vol. 152(C), pages 896-905.
    7. Touati, Khaled & Usman, Haamid Sani & Mulligan, Catherine N. & Rahaman, Md. Saifur, 2020. "Energetic and economic feasibility of a combined membrane-based process for sustainable water and energy systems," Applied Energy, Elsevier, vol. 264(C).
    8. Touati, Khaled & Salamanca, Jacobo & Tadeo, Fernando & Elfil, Hamza, 2017. "Energy recovery from two-stage SWRO plant using PRO without external freshwater feed stream: Theoretical analysis," Renewable Energy, Elsevier, vol. 105(C), pages 84-95.
    9. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
    10. Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Pressure-retarded osmotic power system model considering non-ideal effects," Renewable Energy, Elsevier, vol. 75(C), pages 416-424.
    11. Tran, Thomas T.D. & Park, Keunhan & Smith, Amanda D., 2017. "System scaling approach and thermoeconomic analysis of a pressure retarded osmosis system for power production with hypersaline draw solution: A Great Salt Lake case study," Energy, Elsevier, vol. 126(C), pages 97-111.
    12. Touati, Khaled & Tadeo, Fernando & Elfil, Hamza, 2017. "Osmotic energy recovery from Reverse Osmosis using two-stage Pressure Retarded Osmosis," Energy, Elsevier, vol. 132(C), pages 213-224.
    13. Prante, Jeri L. & Ruskowitz, Jeffrey A. & Childress, Amy E. & Achilli, Andrea, 2014. "RO-PRO desalination: An integrated low-energy approach to seawater desalination," Applied Energy, Elsevier, vol. 120(C), pages 104-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgia Tomassi & Pietro Romano & Gabriele Di Giacomo, 2021. "Modern Use of Water Produced by Purification of Municipal Wastewater: A Case Study," Energies, MDPI, vol. 14(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maisonneuve, Jonathan & Chintalacheruvu, Sanjana, 2019. "Increasing osmotic power and energy with maximum power point tracking," Applied Energy, Elsevier, vol. 238(C), pages 683-695.
    2. Touati, Khaled & Rahaman, Md. Saifur, 2020. "Viability of pressure-retarded osmosis for harvesting energy from salinity gradients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Tawalbeh, Muhammad & Al-Othman, Amani & Abdelwahab, Noun & Alami, Abdul Hai & Olabi, Abdul Ghani, 2021. "Recent developments in pressure retarded osmosis for desalination and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Touati, Khaled & Salamanca, Jacobo & Tadeo, Fernando & Elfil, Hamza, 2017. "Energy recovery from two-stage SWRO plant using PRO without external freshwater feed stream: Theoretical analysis," Renewable Energy, Elsevier, vol. 105(C), pages 84-95.
    5. Manzoor, Husnain & Selam, Muaz A. & Abdur Rahman, Fahim Bin & Adham, Samer & Castier, Marcelo & Abdel-Wahab, Ahmed, 2020. "A tool for assessing the scalability of pressure-retarded osmosis (PRO) membranes," Renewable Energy, Elsevier, vol. 149(C), pages 987-999.
    6. Kim, Minseok & Kim, Suhan, 2018. "Practical limit of energy production from seawater by full-scale pressure retarded osmosis," Energy, Elsevier, vol. 158(C), pages 373-382.
    7. Touati, Khaled & Tadeo, Fernando & Elfil, Hamza, 2017. "Osmotic energy recovery from Reverse Osmosis using two-stage Pressure Retarded Osmosis," Energy, Elsevier, vol. 132(C), pages 213-224.
    8. Salamanca, Jacobo M. & Álvarez-Silva, Oscar & Tadeo, Fernando, 2019. "Potential and analysis of an osmotic power plant in the Magdalena River using experimental field-data," Energy, Elsevier, vol. 180(C), pages 548-555.
    9. Altaee, Ali & Zaragoza, Guillermo & Drioli, Enrico & Zhou, John, 2017. "Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process," Applied Energy, Elsevier, vol. 199(C), pages 359-369.
    10. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
    11. Altaee, Ali & Palenzuela, Patricia & Zaragoza, Guillermo & AlAnezi, Adnan Alhathal, 2017. "Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance," Applied Energy, Elsevier, vol. 191(C), pages 328-345.
    12. He, Wei & Wang, Yang & Elyasigomari, Vahid & Shaheed, Mohammad Hasan, 2016. "Evaluation of the detrimental effects in osmotic power assisted reverse osmosis (RO) desalination," Renewable Energy, Elsevier, vol. 93(C), pages 608-619.
    13. Touati, Khaled & Usman, Haamid Sani & Mulligan, Catherine N. & Rahaman, Md. Saifur, 2020. "Energetic and economic feasibility of a combined membrane-based process for sustainable water and energy systems," Applied Energy, Elsevier, vol. 264(C).
    14. Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2016. "Experimental investigation of pressure retarded osmosis for renewable energy conversion: Towards increased net power," Applied Energy, Elsevier, vol. 164(C), pages 425-435.
    15. Ortega-Delgado, B. & Giacalone, F. & Cipollina, A. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G., 2019. "Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
    17. Moosazadeh, Mohammad & Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2023. "Techno-economic feasibility and environmental impact evaluation of a hybrid solar thermal membrane-based power desalination system," Energy, Elsevier, vol. 278(PA).
    18. Tran, Thomas T.D. & Smith, Amanda D., 2017. "fEvaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1372-1388.
    19. Wen Yi Chia & Kuan Shiong Khoo & Shir Reen Chia & Kit Wayne Chew & Guo Yong Yew & Yeek-Chia Ho & Pau Loke Show & Wei-Hsin Chen, 2020. "Factors Affecting the Performance of Membrane Osmotic Processes for Bioenergy Development," Energies, MDPI, vol. 13(2), pages 1-22, January.
    20. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220320764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.