IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics0360544220311762.html
   My bibliography  Save this article

Three-step modification and optimization of Kalina power-cooling cogeneration based on energy, pinch, and economics analyses

Author

Listed:
  • Dehghani, Mohammad Javad
  • Yoo, ChangKyoo

Abstract

This study proposes a systematic approach for modification and optimization of Kalina power-cooling cogeneration (KPCC) under a three-step procedure. In the first of three steps, KPCC is modeled and optimized thermodynamically by a non-dominated sorting genetic algorithm II (NSGA-II). In the second step, heat pinch analysis (HEPA) modifies the performance of KPCC heat exchangers network (HEN). Finally, the geometries of the heat exchangers are optimized by nonlinear programming (NLP) to minimize the system’s purchasing cost. The results showed that KPCC could achieve thermal and power-cooling efficiencies of 12.1% and 38.6%, respectively. Moreover, the HEN satisfied HEPA constraints with nine exchangers at a minimum temperature difference (DT) of 10 K. By employing NLP, investment costs of the heat exchangers were reduced significantly and the overall investment costs of KPCC decreased by approximately 31%, demonstrating that the three-step procedure can optimize KPCC efficiency while minimizing costs.

Suggested Citation

  • Dehghani, Mohammad Javad & Yoo, ChangKyoo, 2020. "Three-step modification and optimization of Kalina power-cooling cogeneration based on energy, pinch, and economics analyses," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311762
    DOI: 10.1016/j.energy.2020.118069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220311762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eller, Tim & Heberle, Florian & Brüggemann, Dieter, 2017. "Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle," Energy, Elsevier, vol. 119(C), pages 188-198.
    2. Chen, Yaping & Guo, Zhanwei & Wu, Jiafeng & Zhang, Zhi & Hua, Junye, 2015. "Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle," Energy, Elsevier, vol. 90(P2), pages 2028-2037.
    3. Merzic, A. & Music, M. & Haznadar, Z., 2017. "Conceptualizing sustainable development of conventional power systems in developing countries – A contribution towards low carbon future," Energy, Elsevier, vol. 126(C), pages 112-123.
    4. Ziółkowski, Paweł & Badur, Janusz & Ziółkowski, Piotr Józef, 2019. "An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski's idea," Energy, Elsevier, vol. 185(C), pages 763-786.
    5. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.
    6. Imran, Muhammad & Haglind, Fredrik & Lemort, Vincent & Meroni, Andrea, 2019. "Optimization of organic rankine cycle power systems for waste heat recovery on heavy-duty vehicles considering the performance, cost, mass and volume of the system," Energy, Elsevier, vol. 180(C), pages 229-241.
    7. Wang, Yongqing & Lior, Noam, 2011. "Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump," Energy, Elsevier, vol. 36(6), pages 3878-3887.
    8. Yin, Jiqiang & Yu, Zeting & Zhang, Chenghui & Tian, Minli & Han, Jitian, 2018. "Thermodynamic analysis of a novel combined cooling and power system driven by low-grade heat sources," Energy, Elsevier, vol. 156(C), pages 319-327.
    9. Moradpoor, Iraj & Ebrahimi, Masood, 2019. "Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle," Energy, Elsevier, vol. 185(C), pages 1005-1016.
    10. Joon-Young Kim & Shelly Salim & Jae-Min Cha & Sungho Park, 2019. "Development of Total Capital Investment Estimation Module for Waste Heat Power Plant," Energies, MDPI, vol. 12(8), pages 1-19, April.
    11. Babaelahi, Mojtaba & Mofidipour, Ehsan & Rafat, Ehsan, 2019. "Design, dynamic analysis and control-based exergetic optimization for solar-driven Kalina power plant," Energy, Elsevier, vol. 187(C).
    12. Simpson, Michael C. & Chatzopoulou, Maria Anna & Oyewunmi, Oyeniyi A. & Le Brun, Niccolo & Sapin, Paul & Markides, Christos N., 2019. "Technoeconomic analysis of internal combustion engine – organic Rankine cycle systems for combined heat and power in energy-intensive buildings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Yu, Zeting & Han, Jitian & Liu, Hai & Zhao, Hongxia, 2014. "Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios," Applied Energy, Elsevier, vol. 122(C), pages 53-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    2. Song, Yanli & Chen, Xin & Zhou, Jialong & Du, Tao & Xie, Feng & Guo, Haifeng, 2022. "Research on performance of passive heat supply tower based on the back propagation neural network," Energy, Elsevier, vol. 250(C).
    3. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    4. Salemi, Sina & Torabi, Morteza & Haghparast, Arash Kashani, 2022. "Technoeconomical investigation of energy harvesting from MIDREX® process waste heat using Kalina cycle in direct reduction iron process," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan & Simonson, Carey James, 2022. "Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture," Energy, Elsevier, vol. 253(C).
    2. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).
    3. Eydhah Almatrafi & Abdul Khaliq & Rajesh Kumar & Ahmad Bamasag & Muhammad Ehtisham Siddiqui, 2023. "Proposal and Investigation of a New Tower Solar Collector-Based Trigeneration Energy System," Sustainability, MDPI, vol. 15(9), pages 1-22, May.
    4. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    5. Hu, Yuankang & Deng, Zeyu & Yang, Jiaming & Hu, Yilun & Zhong, Kaifeng & Xie, Yubao & Ou, Zhihua & Guo, Shuting & Li, Xiaoning, 2024. "Performance analysis of a novel multimode electricity-cooling cogeneration system (ECCS) driven by exhaust from a marine engine," Energy, Elsevier, vol. 300(C).
    6. Zhang, Yonghao & Shi, Lingfeng & Tian, Hua & Li, Ligeng & Wang, Xuan & Sun, Xiaocun & Shu, Gequn, 2022. "Experiment on CO2–based combined cooling and power cycle: A multi-mode operating investigation," Applied Energy, Elsevier, vol. 313(C).
    7. Qasem, Naef A.A. & Lawal, Dahiru U. & Aljundi, Isam H. & Abdallah, Ayman M. & Panchal, Hitesh, 2022. "Novel integration of a parallel-multistage direct contact membrane distillation plant with a double-effect absorption refrigeration system," Applied Energy, Elsevier, vol. 323(C).
    8. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    9. Kardaś, Dariusz & Polesek-Karczewska, Sylwia & Turzyński, Tomasz & Wardach-Święcicka, Izabela & Hercel, Paulina & Szymborski, Jakub & Heda, Łukasz, 2023. "Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system," Energy, Elsevier, vol. 282(C).
    10. Hamid, Mohammed O.A. & Zhang, Bo & Yang, Luopeng, 2014. "Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater," Energy, Elsevier, vol. 76(C), pages 241-253.
    11. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    12. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    13. Mahmoudi, S.M.S. & Akbari Kordlar, M., 2018. "A new flexible geothermal based cogeneration system producing power and refrigeration," Renewable Energy, Elsevier, vol. 123(C), pages 499-512.
    14. N Shankar Ganesh & T Srinivas & G Uma Maheswari & S Mahendiran & D Manivannan, 2019. "Development of optimized energy system," Energy & Environment, , vol. 30(7), pages 1190-1205, November.
    15. Petersen, Nils Hendrik & Arras, Maximilian & Wirsum, Manfred & Ma, Linwei, 2024. "Integration of large-scale heat pumps to assist sustainable water desalination and district cooling," Energy, Elsevier, vol. 289(C).
    16. Abrosimov, Kirill & Baccioli, Andrea & Bischi, Aldo, 2020. "Extensive techno-economic assessment of combined inverted Brayton – Organic Rankine cycle for high-temperature waste heat recovery," Energy, Elsevier, vol. 211(C).
    17. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    18. Sharan, Prashant & Bandyopadhyay, Santanu, 2016. "Energy optimization in parallel/cross feed multiple-effect evaporator based desalination system," Energy, Elsevier, vol. 111(C), pages 756-767.
    19. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    20. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.