Development of Total Capital Investment Estimation Module for Waste Heat Power Plant
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Glosten, Lawrence R. & Harris, Lawrence E., 1988. "Estimating the components of the bid/ask spread," Journal of Financial Economics, Elsevier, vol. 21(1), pages 123-142, May.
- Sinha, Vinod T., 1988. "Estimating capital costs from an equipment list: A case study," Engineering Costs and Production Economics, Elsevier, vol. 14(4), pages 259-266, December.
- Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
- Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
- Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
- Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
- Pierobon, L. & Benato, A. & Scolari, E. & Haglind, F. & Stoppato, A., 2014. "Waste heat recovery technologies for offshore platforms," Applied Energy, Elsevier, vol. 136(C), pages 228-241.
- Jesper Graa Andreasen & Andrea Meroni & Fredrik Haglind, 2017. "A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships," Energies, MDPI, vol. 10(4), pages 1-23, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Moradpoor, Iraj & Syri, Sanna & Santasalo-Aarnio, Annukka, 2023. "Green hydrogen production for oil refining – Finnish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Hassan, Muhammed A. & Araji, Mohamad T., 2024. "Hierarchical optimization of district heating plants by integrating evolutionary and non-linear programming algorithms," Applied Energy, Elsevier, vol. 373(C).
- Dehghani, Mohammad Javad & Yoo, ChangKyoo, 2020. "Three-step modification and optimization of Kalina power-cooling cogeneration based on energy, pinch, and economics analyses," Energy, Elsevier, vol. 205(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
- Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
- Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
- Ge, Y.T. & Li, L. & Luo, X. & Tassou, S.A., 2018. "Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles," Applied Energy, Elsevier, vol. 227(C), pages 220-230.
- Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
- Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
- Miriam Benedetti & Daniele Dadi & Lorena Giordano & Vito Introna & Pasquale Eduardo Lapenna & Annalisa Santolamazza, 2021. "Design of a Database of Case Studies and Technologies to Increase the Diffusion of Low-Temperature Waste Heat Recovery in the Industrial Sector," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
- Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
- Li, Xiaoya & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Huang, Guangdai & Chen, Tianyu & Liu, Peng, 2017. "Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 696-707.
- Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Alberto Benato & Alarico Macor, 2017. "Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle," Energies, MDPI, vol. 10(3), pages 1-18, March.
- Ieva Pakere & Dagnija Blumberga & Anna Volkova & Kertu Lepiksaar & Agate Zirne, 2023. "Valorisation of Waste Heat in Existing and Future District Heating Systems," Energies, MDPI, vol. 16(19), pages 1-22, September.
- Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
- Benato, A. & Kærn, M.R. & Pierobon, L. & Stoppato, A. & Haglind, F., 2015. "Analysis of hot spots in boilers of organic Rankine cycle units during transient operation," Applied Energy, Elsevier, vol. 151(C), pages 119-131.
- Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
- Tan, Zhimin & Feng, Xiao & Yang, Minbo & Wang, Yufei, 2022. "Energy and economic performance comparison of heat pump and power cycle in low grade waste heat recovery," Energy, Elsevier, vol. 260(C).
- Iglesias Garcia, Steven & Ferreiro Garcia, Ramon & Carbia Carril, Jose & Iglesias Garcia, Denis, 2018. "A review of thermodynamic cycles used in low temperature recovery systems over the last two years," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 760-767.
- Daniele Dadi & Vito Introna & Miriam Benedetti, 2022. "Decarbonization of Heat through Low-Temperature Waste Heat Recovery: Proposal of a Tool for the Preliminary Evaluation of Technologies in the Industrial Sector," Sustainability, MDPI, vol. 14(19), pages 1-28, October.
- Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
More about this item
Keywords
waste heat; total capital investment; economic analysis; equipment cost model; steam cycle; organic rankine cycle (ORC); supercritical carbon dioxide cycle (sCO 2 Cycle); power plant; system architecture; systems engineering (SE);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1492-:d:224416. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.