Technoeconomical investigation of energy harvesting from MIDREX® process waste heat using Kalina cycle in direct reduction iron process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.122322
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dehghani, Mohammad Javad & Yoo, ChangKyoo, 2020. "Three-step modification and optimization of Kalina power-cooling cogeneration based on energy, pinch, and economics analyses," Energy, Elsevier, vol. 205(C).
- Zhuang, Yu & Zhou, Congcong & Dong, Yachao & Du, Jian & Shen, Shengqiang, 2021. "A hierarchical optimization and design of double Kalina Cycles for waste heat recovery," Energy, Elsevier, vol. 219(C).
- Li, Xinguo & Zhang, Qilin & Li, Xiajie, 2013. "A Kalina cycle with ejector," Energy, Elsevier, vol. 54(C), pages 212-219.
- Hong Gao & Fuxiang Chen, 2018. "Thermo-Economic Analysis of a Bottoming Kalina Cycle for Internal Combustion Engine Exhaust Heat Recovery," Energies, MDPI, vol. 11(11), pages 1-19, November.
- Johansson, Maria T. & Söderström, Mats, 2011. "Options for the Swedish steel industry – Energy efficiency measures and fuel conversion," Energy, Elsevier, vol. 36(1), pages 191-198.
- Yari, M. & Mehr, A.S. & Zare, V. & Mahmoudi, S.M.S. & Rosen, M.A., 2015. "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source," Energy, Elsevier, vol. 83(C), pages 712-722.
- Babaelahi, Mojtaba & Mofidipour, Ehsan & Rafat, Ehsan, 2019. "Design, dynamic analysis and control-based exergetic optimization for solar-driven Kalina power plant," Energy, Elsevier, vol. 187(C).
- Zhang, Xinxin & He, Maogang & Zhang, Ying, 2012. "A review of research on the Kalina cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5309-5318.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Jingwei & Huang, Yizhen & Liu, Yang & Jiaqiang, E., 2024. "System development and thermodynamic performance analysis of a system integrating supercritical water gasification of black liquor with direct-reduced iron process," Energy, Elsevier, vol. 295(C).
- Rahmani, Amir & Aboojafari, Roohallah & Bonyadi Naeini, Ali & Mashayekh, Javad, 2024. "Adoption of digital innovation for resource efficiency and sustainability in the metal industry," Resources Policy, Elsevier, vol. 90(C).
- Baby-Jean Robert Mungyeko Bisulandu & Adrian Ilinca & Marcel Tsimba Mboko & Lucien Mbozi Mbozi, 2023. "Thermodynamic Performance of a Cogeneration Plant Driven by Waste Heat from Cement Kilns Exhaust Gases," Energies, MDPI, vol. 16(5), pages 1-24, March.
- Masih Hosseinzadeh & Hossein Mashhadimoslem & Farid Maleki & Ali Elkamel, 2022. "Prediction of Solid Conversion Process in Direct Reduction Iron Oxide Using Machine Learning," Energies, MDPI, vol. 15(24), pages 1-25, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
- Meftahpour, Haleh & Saray, Rahim Khoshbakhti & Aghaei, Ali Tavakkol & Bahlouli, Keyvan, 2024. "Comprehensive analysis of energy, exergy, economic, and environmental aspects in implementing the Kalina cycle for waste heat recovery from a gas turbine cycle coupled with a steam generator," Energy, Elsevier, vol. 290(C).
- Cheng, Ziyang & Wang, Jiangfeng & Hu, Bin & Chen, Liangqi & Lou, Juwei & Cheng, Shangfang & Wu, Weifeng, 2024. "Improved modelling for ammonia-water power cycle coupled with turbine optimization design: A comparison study," Energy, Elsevier, vol. 292(C).
- Ruixiong Li & Huanran Wang & Erren Yao & Shuyu Zhang, 2016. "Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC," Energies, MDPI, vol. 10(1), pages 1-19, December.
- Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.
- Yoon, Jung-In & Seol, Sung-Hoon & Son, Chang-Hyo & Jung, Suk-Ho & Kim, Young-Bok & Lee, Ho-Saeng & Kim, Hyeon-Ju & Moon, Jung-Hyun, 2017. "Analysis of the high-efficiency EP-OTEC cycle using R152a," Renewable Energy, Elsevier, vol. 105(C), pages 366-373.
- Larsen, Ulrik & Nguyen, Tuong-Van & Knudsen, Thomas & Haglind, Fredrik, 2014. "System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines," Energy, Elsevier, vol. 64(C), pages 484-494.
- Wang, Zengli & Shao, Hua & Shao, Mingcheng & Dai, Zeyu & Zhang, Rao, 2024. "Thermodynamic analysis of a coupled system based on total flow cycle and partially evaporated organic Rankine cycle for hot dry rock utilization," Renewable Energy, Elsevier, vol. 225(C).
- Meinel, Dominik & Wieland, Christoph & Spliethoff, Hartmut, 2014. "Economic comparison of ORC (Organic Rankine cycle) processes at different scales," Energy, Elsevier, vol. 74(C), pages 694-706.
- Yu, Zeting & Su, Ruizhi & Feng, Chunyu, 2020. "Thermodynamic analysis and multi-objective optimization of a novel power generation system driven by geothermal energy," Energy, Elsevier, vol. 199(C).
- Yu, Zeting & Han, Jitian & Liu, Hai & Zhao, Hongxia, 2014. "Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios," Applied Energy, Elsevier, vol. 122(C), pages 53-61.
- Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
- Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
- Mahmoudi, S.M.S. & Akbari Kordlar, M., 2018. "A new flexible geothermal based cogeneration system producing power and refrigeration," Renewable Energy, Elsevier, vol. 123(C), pages 499-512.
- Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
- Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
- Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
- Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
- Moradpoor, Iraj & Ebrahimi, Masood, 2019. "Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle," Energy, Elsevier, vol. 185(C), pages 1005-1016.
- Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.
More about this item
Keywords
Direct reduced iron (DRI); MIDREX; Kalina cycle; Energy efficiency; Waste heat recovery;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221025706. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.