IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v30y2019i7p1190-1205.html
   My bibliography  Save this article

Development of optimized energy system

Author

Listed:
  • N Shankar Ganesh
  • T Srinivas
  • G Uma Maheswari
  • S Mahendiran
  • D Manivannan

Abstract

The Kalina cycle is a binary mixture power generation system optimised for a range of waste heat recovery applications, which has received considerable attention as an energy efficient power generation cycle well suited to Indian climatic conditions. The Kalina cycle makes use of a binary mixture system which utilises ammonia–water mixture as a working fluid. First law and second law analysis were examined on two different Kalina cycle configurations (low temperature and medium temperature Kalina systems). The low temperature series heaters Kalina cycle system is driven with renewable energy source, while medium temperature is generally used for hot stream of energy from boiling water nuclear reactor or pressurised water nuclear reactor. The specific work output, energy, exergy and relative efficiencies have been optimized with the parameters considered. Separator temperature and turbine concentration (separator inlet concentration, x3 for Medium temperature Kalina cycle system (MTKCS) and separator vapour concentration, x11 for Low temperature Kalina cycle system (LTKCS)) are treated as common parameters between the two Kalina cycle systems. The optimum separator temperature for low temperature Kalina cycle systems with series heat exchangers and medium temperature Kalina cycle systems is in the ranges 110–150°C and 70–100°C, respectively, and the turbine concentration between 0.85–0.97 and 0.77–0.86. The highest exergy efficiency observed in the study (82%) occurred for the MTKCS, which exhibits lower exergy losses than the LTKCS, due to its more efficient energy recovery. The results identify that Kalina cycle systems can well adapt for medium temperature applications.

Suggested Citation

  • N Shankar Ganesh & T Srinivas & G Uma Maheswari & S Mahendiran & D Manivannan, 2019. "Development of optimized energy system," Energy & Environment, , vol. 30(7), pages 1190-1205, November.
  • Handle: RePEc:sae:engenv:v:30:y:2019:i:7:p:1190-1205
    DOI: 10.1177/0958305X19834387
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X19834387
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X19834387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Larsen, Ulrik & Nguyen, Tuong-Van & Knudsen, Thomas & Haglind, Fredrik, 2014. "System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines," Energy, Elsevier, vol. 64(C), pages 484-494.
    2. Chen, Yaping & Guo, Zhanwei & Wu, Jiafeng & Zhang, Zhi & Hua, Junye, 2015. "Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle," Energy, Elsevier, vol. 90(P2), pages 2028-2037.
    3. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2009. "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, Elsevier, vol. 86(6), pages 941-948, June.
    4. Zhu, Zilong & Zhang, Zhi & Chen, Yaping & Wu, Jiafeng, 2016. "Parameter optimization of dual-pressure vaporization Kalina cycle with second evaporator parallel to economizer," Energy, Elsevier, vol. 112(C), pages 420-429.
    5. Nguyen, Tuong-Van & Knudsen, Thomas & Larsen, Ulrik & Haglind, Fredrik, 2014. "Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications," Energy, Elsevier, vol. 71(C), pages 277-288.
    6. Victor, Rachel Anne & Kim, Jin-Kuk & Smith, Robin, 2013. "Composition optimisation of working fluids for Organic Rankine Cycles and Kalina cycles," Energy, Elsevier, vol. 55(C), pages 114-126.
    7. Shankar Ganesh, N. & Srinivas, T., 2012. "Design and modeling of low temperature solar thermal power station," Applied Energy, Elsevier, vol. 91(1), pages 180-186.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
    2. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
    3. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
    4. Nguyen, Tuong-Van & Knudsen, Thomas & Larsen, Ulrik & Haglind, Fredrik, 2014. "Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications," Energy, Elsevier, vol. 71(C), pages 277-288.
    5. Liu, Bohan & Lu, Mingjian & Shui, Bo & Sun, Yuwei & Wei, Wei, 2022. "Thermal-hydraulic performance analysis of printed circuit heat exchanger precooler in the Brayton cycle for supercritical CO2 waste heat recovery," Applied Energy, Elsevier, vol. 305(C).
    6. Chen, Yaping & Zhu, Zilong & Wu, Jiafeng & Yang, Shifan & Zhang, Baohuai, 2017. "A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Energy, Elsevier, vol. 120(C), pages 128-137.
    7. Chen, X. & Sun, L.N. & Du, S., 2022. "Analysis and optimization on a modified ammonia-water power cycle for more efficient power generation," Energy, Elsevier, vol. 241(C).
    8. Saffari, Hamid & Sadeghi, Sadegh & Khoshzat, Mohsen & Mehregan, Pooyan, 2016. "Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm," Renewable Energy, Elsevier, vol. 89(C), pages 154-167.
    9. Teo, A.E. & Chiong, M.S. & Yang, M. & Romagnoli, A. & Martinez-Botas, R.F. & Rajoo, S., 2019. "Performance evaluation of low-pressure turbine, turbo-compounding and air-Brayton cycle as engine waste heat recovery method," Energy, Elsevier, vol. 166(C), pages 895-907.
    10. Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
    11. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Eller, Tim & Heberle, Florian & Brüggemann, Dieter, 2017. "Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle," Energy, Elsevier, vol. 119(C), pages 188-198.
    13. Andreasen, J.G. & Larsen, U. & Knudsen, T. & Haglind, F., 2015. "Design and optimization of a novel organic Rankine cycle with improved boiling process," Energy, Elsevier, vol. 91(C), pages 48-59.
    14. Zhuang, Yu & Zhou, Congcong & Dong, Yachao & Du, Jian & Shen, Shengqiang, 2021. "A hierarchical optimization and design of double Kalina Cycles for waste heat recovery," Energy, Elsevier, vol. 219(C).
    15. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    16. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    17. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    19. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    20. Costante Invernizzi & Marco Binotti & Paola Bombarda & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2019. "Water Mixtures as Working Fluids in Organic Rankine Cycles," Energies, MDPI, vol. 12(13), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:30:y:2019:i:7:p:1190-1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.