IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v279y2023ics0360544223012045.html
   My bibliography  Save this article

Potential savings in the cement industry using waste heat recovery technologies

Author

Listed:
  • Marenco-Porto, Carlos A.
  • Fierro, José J.
  • Nieto-Londoño, César
  • Lopera, Leonardo
  • Escudero-Atehortua, Ana
  • Giraldo, Mauricio
  • Jouhara, Hussam

Abstract

This work describes technologies especially suitable for enhancing cement production process efficiency and overall plant performance by preheating raw material or generating electricity, thus reducing thermal losses, costs, and carbon dioxide emissions. Assessed systems for this purpose include power cycles such as the Organic Rankine Cycle, Tri-lateral Cycle, and Kalina cycle, and alternatives currently under development, such as thermoelectric generators and supercritical fluid cycles. Likewise, the zones of the cement production process with the most significant waste-heat recovery potential are pointed out, focusing on clinkerisation, which accounts for most of the thermal energy expenditure of a cement plant. In addition, the total carbon dioxide emissions related to cement manufacture and the participation of each production stage are presented. Finally, the potential for waste heat recovery in the cement industry of the first six Latin American producers is reviewed, which covers 82% of the total production in the region, based on the thermal and electrical requirements reported in the literature. The potential for emissions savings of carbon dioxide is estimated under the emission factor for the electricity system in each country.

Suggested Citation

  • Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223012045
    DOI: 10.1016/j.energy.2023.127810
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Jian & Song, Yin & Gu, Chun-wei, 2015. "Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines," Energy, Elsevier, vol. 82(C), pages 976-985.
    2. Ishaq, H. & Dincer, I. & Naterer, G.F., 2019. "Exergy and cost analyses of waste heat recovery from furnace cement slag for clean hydrogen production," Energy, Elsevier, vol. 172(C), pages 1243-1253.
    3. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    4. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.
    5. Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2010. "Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle," Energy, Elsevier, vol. 35(12), pages 5049-5062.
    6. Zhonghe Han & Peng Li & Xu Han & Zhongkai Mei & Zhi Wang, 2017. "Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery," Energies, MDPI, vol. 10(10), pages 1-23, October.
    7. Aghaali, Habib & Ångström, Hans-Erik, 2015. "A review of turbocompounding as a waste heat recovery system for internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 813-824.
    8. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    9. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    10. Woodland, Brandon J. & Ziviani, Davide & Braun, James E. & Groll, Eckhard A., 2020. "Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery," Energy, Elsevier, vol. 193(C).
    11. Jouhara, Hussam & Nieto, Nerea & Egilegor, Bakartxo & Zuazua, Josu & González, Eva & Yebra, Ignacio & Igesias, Alfredo & Delpech, Bertrand & Almahmoud, Sulaiman & Brough, Daniel & Malinauskaite, Jurgi, 2023. "Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry," Energy, Elsevier, vol. 266(C).
    12. Shu, Gequn & Li, Xiaoning & Tian, Hua & Liang, Xingyu & Wei, Haiqiao & Wang, Xu, 2014. "Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle," Applied Energy, Elsevier, vol. 119(C), pages 204-217.
    13. Eller, Tim & Heberle, Florian & Brüggemann, Dieter, 2017. "Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle," Energy, Elsevier, vol. 119(C), pages 188-198.
    14. Moreira, L.F. & Arrieta, F.R.P., 2019. "Thermal and economic assessment of organic Rankine cycles for waste heat recovery in cement plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    16. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2015. "An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications," Applied Energy, Elsevier, vol. 138(C), pages 605-620.
    17. Jiawei Zhang & Lirong Song & Steffen Hindborg Pedersen & Hao Yin & Le Thanh Hung & Bo Brummerstedt Iversen, 2017. "Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    18. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    19. Ke, Jing & Zheng, Nina & Fridley, David & Price, Lynn & Zhou, Nan, 2012. "Potential energy savings and CO2 emissions reduction of China's cement industry," Energy Policy, Elsevier, vol. 45(C), pages 739-751.
    20. Costall, A.W. & Gonzalez Hernandez, A. & Newton, P.J. & Martinez-Botas, R.F., 2015. "Design methodology for radial turbo expanders in mobile organic Rankine cycle applications," Applied Energy, Elsevier, vol. 157(C), pages 729-743.
    21. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    22. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    23. Ghalandari, Vahab & Majd, Mahdieh Mozaffari & Golestanian, Amir, 2019. "Energy audit for pyro-processing unit of a new generation cement plant and feasibility study for recovering waste heat: A case study," Energy, Elsevier, vol. 173(C), pages 833-843.
    24. Amini, Amir & Miller, Jeremy & Jouhara, Hussam, 2017. "An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers," Energy, Elsevier, vol. 136(C), pages 163-172.
    25. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    26. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
    27. Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Peretto, A. & Archetti, D. & Campana, F. & Ferrari, T. & Rossetti, N., 2019. "Feasibility of ORC application in natural gas compressor stations," Energy, Elsevier, vol. 173(C), pages 1-15.
    28. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    29. Daniel Kraemer & Qing Jie & Kenneth McEnaney & Feng Cao & Weishu Liu & Lee A. Weinstein & James Loomis & Zhifeng Ren & Gang Chen, 2016. "Concentrating solar thermoelectric generators with a peak efficiency of 7.4%," Nature Energy, Nature, vol. 1(11), pages 1-8, November.
    30. Ajimotokan, H.A. & Sher, I., 2015. "Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation," Applied Energy, Elsevier, vol. 154(C), pages 26-34.
    31. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    32. Chen, Heng & Wang, Yihan & An, Liuming & Xu, Gang & Zhu, Xin & Liu, Wenyi & Lei, Jing, 2022. "Performance evaluation of a novel design for the waste heat recovery of a cement plant incorporating a coal-fired power plant," Energy, Elsevier, vol. 246(C).
    33. Santini, Lorenzo & Accornero, Carlo & Cioncolini, Andrea, 2016. "On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant," Applied Energy, Elsevier, vol. 181(C), pages 446-463.
    34. Yu, Shuhai & Du, Qing & Diao, Hai & Shu, Gequn & Jiao, Kui, 2015. "Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery," Applied Energy, Elsevier, vol. 138(C), pages 276-290.
    35. Collings, Peter & Yu, Zhibin & Wang, Enhua, 2016. "A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions," Applied Energy, Elsevier, vol. 171(C), pages 581-591.
    36. Yari, M. & Mehr, A.S. & Zare, V. & Mahmoudi, S.M.S. & Rosen, M.A., 2015. "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source," Energy, Elsevier, vol. 83(C), pages 712-722.
    37. Mojtaba Mirhosseini & Alireza Rezaniakolaei & Lasse Rosendahl, 2018. "Numerical Study on Heat Transfer to an Arc Absorber Designed for a Waste Heat Recovery System around a Cement Kiln," Energies, MDPI, vol. 11(3), pages 1-16, March.
    38. Fischer, Johann, 2011. "Comparison of trilateral cycles and organic Rankine cycles," Energy, Elsevier, vol. 36(10), pages 6208-6219.
    39. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    40. Rijpkema, J. & Munch, K. & Andersson, S.B., 2018. "Thermodynamic potential of twelve working fluids in Rankine and flash cycles for waste heat recovery in heavy duty diesel engines," Energy, Elsevier, vol. 160(C), pages 996-1007.
    41. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    42. Madlool, N.A. & Saidur, R. & Hossain, M.S. & Rahim, N.A., 2011. "A critical review on energy use and savings in the cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2042-2060, May.
    43. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2017. "Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK," Applied Energy, Elsevier, vol. 186(P3), pages 291-303.
    44. Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
    45. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    46. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    47. Di Battista, D. & Mauriello, M. & Cipollone, R., 2015. "Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle," Applied Energy, Elsevier, vol. 152(C), pages 109-120.
    48. Mirhosseini, Mojtaba & Rezania, Alireza & Rosendahl, Lasse, 2019. "Harvesting waste heat from cement kiln shell by thermoelectric system," Energy, Elsevier, vol. 168(C), pages 358-369.
    49. He, Chao & Liu, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2012. "The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle," Energy, Elsevier, vol. 38(1), pages 136-143.
    50. Delpech, Bertrand & Axcell, Brian & Jouhara, Hussam, 2019. "Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln," Energy, Elsevier, vol. 170(C), pages 636-651.
    51. Jouhara, Hussam & Bertrand, Delpech & Axcell, Brian & Montorsi, Luca & Venturelli, Matteo & Almahmoud, Sulaiman & Milani, Massimo & Ahmad, Lujean & Chauhan, Amisha, 2021. "Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xinxin & Wang, Ke & Shen, Zuguo, 2024. "A novel strategy of inserting radiation shields to enhance the performance of thermoelectric generator systems for industrial high-temperature heat recovery," Energy, Elsevier, vol. 301(C).
    2. Marenco-Porto, Carlos A. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Evaluation of Organic Rankine Cycle alternatives for the cement industry using Analytic Hierarchy Process (AHP) methodology and energy-economic-environmental (3E) analysis," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marenco-Porto, Carlos A. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Evaluation of Organic Rankine Cycle alternatives for the cement industry using Analytic Hierarchy Process (AHP) methodology and energy-economic-environmental (3E) analysis," Energy, Elsevier, vol. 281(C).
    2. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    3. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    4. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    6. Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
    7. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    8. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    9. Braimakis, Konstantinos & Karellas, Sotirios, 2023. "Exergy efficiency potential of dual-phase expansion trilateral and partial evaporation ORC with zeotropic mixtures," Energy, Elsevier, vol. 262(PB).
    10. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    11. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    12. Woodland, Brandon J. & Ziviani, Davide & Braun, James E. & Groll, Eckhard A., 2020. "Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery," Energy, Elsevier, vol. 193(C).
    13. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Chatzopoulou, Maria Anna & Markides, Christos N., 2018. "Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine – Organic Rankine cycle combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 1229-1251.
    16. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    18. White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
    19. Xiaoli Yu & Zhi Li & Yiji Lu & Rui Huang & Anthony Paul Roskilly, 2018. "Investigation of an Innovative Cascade Cycle Combining a Trilateral Cycle and an Organic Rankine Cycle (TLC-ORC) for Industry or Transport Application," Energies, MDPI, vol. 11(11), pages 1-22, November.
    20. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Huang, Hongyan & Yan, Peigang, 2019. "Performance analysis of low speed axial impulse turbine using two type nozzles for small-scale organic Rankine cycle," Energy, Elsevier, vol. 169(C), pages 1139-1152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223012045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.