IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v126y2017icp112-123.html
   My bibliography  Save this article

Conceptualizing sustainable development of conventional power systems in developing countries – A contribution towards low carbon future

Author

Listed:
  • Merzic, A.
  • Music, M.
  • Haznadar, Z.

Abstract

A transition plan for conventionally structured generation portfolios dominantly based on coal fired plants has been offered through four models. The models are primarily focused on elevated penetration of facilities based on intermittent renewable sources and CO2 emission reduction by at least 20% compared to the initial state, accordingly addressing balancing output power variation problems and social aspects of the considered society. These models are:•Flexible generation portfolio model, which can provide balancing power by itself;•Open system model that provides balancing power at the balancing market;•Hybrid system model with hybrid plants based on wind, hydro and solar energy, having the ability to store, convert and use this energy for balancing purposes;•Mix model that includes options from the previous three.

Suggested Citation

  • Merzic, A. & Music, M. & Haznadar, Z., 2017. "Conceptualizing sustainable development of conventional power systems in developing countries – A contribution towards low carbon future," Energy, Elsevier, vol. 126(C), pages 112-123.
  • Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:112-123
    DOI: 10.1016/j.energy.2017.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frieder Borggrefe & Karsten Neuhoff, 2011. "Balancing and Intraday Market Design: Options for Wind Integration," Discussion Papers of DIW Berlin 1162, DIW Berlin, German Institute for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Ma, Teng & Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng, 2019. "Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant," Energy, Elsevier, vol. 175(C), pages 123-138.
    3. Chapman, Andrew J. & McLellan, Benjamin C. & Tezuka, Tetsuo, 2018. "Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways," Applied Energy, Elsevier, vol. 219(C), pages 187-198.
    4. Khrisydel Rhea M. Supapo & Lorafe Lozano & Ian Dominic F. Tabañag & Edward M. Querikiol, 2022. "A Backcasting Analysis toward a 100% Renewable Energy Transition by 2040 for Off-Grid Islands," Energies, MDPI, vol. 15(13), pages 1-19, June.
    5. Relva, Stefania Gomes & Silva, Vinícius Oliveira da & Gimenes, André Luiz Veiga & Udaeta, Miguel Edgar Morales & Ashworth, Peta & Peyerl, Drielli, 2021. "Enhancing developing countries’ transition to a low-carbon electricity sector," Energy, Elsevier, vol. 220(C).
    6. Dehghani, Mohammad Javad & Yoo, ChangKyoo, 2020. "Three-step modification and optimization of Kalina power-cooling cogeneration based on energy, pinch, and economics analyses," Energy, Elsevier, vol. 205(C).
    7. Ifaei, Pouya & Farid, Alireza & Yoo, ChangKyoo, 2018. "An optimal renewable energy management strategy with and without hydropower using a factor weighted multi-criteria decision making analysis and nation-wide big data - Case study in Iran," Energy, Elsevier, vol. 158(C), pages 357-372.
    8. Majd Olleik & Hassan Hamie & Hans Auer, 2022. "Using Natural Gas Resources to De-Risk Renewable Energy Investments in Lower-Income Countries," Energies, MDPI, vol. 15(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
    2. Garnier, Ernesto & Madlener, Reinhard, 2014. "Balancing Forecast Errors in Continuous-Trade Intraday Markets," FCN Working Papers 2/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Paschmann, Martin, 2017. "Leveraging the Benefits of Integrating and Interacting Electric Vehicles and Distributed Energy Resources," EWI Working Papers 2017-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    4. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2017. "Real time procurement of energy and operating reserve from Renewable Energy Sources in deregulated environment considering imbalance penalties," Renewable Energy, Elsevier, vol. 113(C), pages 855-866.
    5. Jean-Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Working Papers EPRG 1329, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Xydas, Erotokritos & Qadrdan, Meysam & Marmaras, Charalampos & Cipcigan, Liana & Jenkins, Nick & Ameli, Hossein, 2017. "Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators," Applied Energy, Elsevier, vol. 192(C), pages 382-394.
    7. Klaus Eisenack & Mathias Mier, 2019. "Peak-load pricing with different types of dispatchability," Journal of Regulatory Economics, Springer, vol. 56(2), pages 105-124, December.
    8. Arthur Henriot, 2012. "Market design with wind: managing low-predictability in intraday markets," RSCAS Working Papers 2012/63, European University Institute.
    9. Wolfgang Buchholz & Jonas Frank & Hans-Dieter Karl & Johannes Pfeiffer & Karen Pittel & Ursula Triebswetter & Jochen Habermann & Wolfgang Mauch & Thomas Staudacher, 2012. "Die Zukunft der Energiemärkte: Ökonomische Analyse und Bewertung von Potenzialen und Handlungsmöglichkeiten," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 57, June.
    10. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    11. Holmberg, Pär & Tangerås, Thomas & Ahlqvist, Victor, 2018. "Central- versus Self-Dispatch in Electricity Markets," Working Paper Series 1257, Research Institute of Industrial Economics, revised 27 Mar 2019.
    12. Casimir Lorenz & Clemens Gerbaulet, 2014. "New Cross-Border Electricity Balancing Arrangements in Europe," Discussion Papers of DIW Berlin 1400, DIW Berlin, German Institute for Economic Research.
    13. repec:dui:wpaper:1318 is not listed on IDEAS
    14. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    15. Knaut, Andreas & Paschmann, Martin, 2019. "Price volatility in commodity markets with restricted participation," Energy Economics, Elsevier, vol. 81(C), pages 37-51.
    16. Fatih Karanfil and Yuanjing Li, 2017. "The Role of Continuous Intraday Electricity Markets: The Integration of Large-Share Wind Power Generation in Denmark," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    17. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    18. Crampes, Claude & Renault, Jérôme, 2022. "Supply Flexibility and risk transfer in electricity markets," TSE Working Papers 22-1350, Toulouse School of Economics (TSE), revised Sep 2023.
    19. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
    20. Crampes, Claude & Renault, Jérôme, 2019. "How many markets for wholesale electricity when supply ispartially flexible?," Energy Economics, Elsevier, vol. 81(C), pages 465-478.
    21. Joan Batalla-Bejerano & Elisa Trujillo-Baute, 2015. "Analysing the sensitivity of electricity system operational costs to deviations in supply and demand," Working Papers 2015/8, Institut d'Economia de Barcelona (IEB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:126:y:2017:i:c:p:112-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.