IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics0360544220310379.html
   My bibliography  Save this article

Nondestructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I–V curves and visual tests: Experimental study and comparison

Author

Listed:
  • Gallardo-Saavedra, Sara
  • Hernández-Callejo, Luis
  • Alonso-García, María del Carmen
  • Santos, José Domingo
  • Morales-Aragonés, José Ignacio
  • Alonso-Gómez, Víctor
  • Moretón-Fernández, Ángel
  • González-Rebollo, Miguel Ángel
  • Martínez-Sacristán, Oscar

Abstract

Photovoltaic (PV) modules are the core of every PV system, representing the power generation and their operation will affect the overall plant performance. It is one of the elements within a PV site with the higher failure appearance, being essential their proper operation to produce reliable, efficient and safety energy. Quantitative analysis and characterization of manufacturing, soldering and breaking PV defects is performed by a combination of electroluminescence (EL), infrared thermography (IRT), electrical current voltage (I–V) curves and visual inspection. Equivalent-circuit model characterization and microscope inspection are also performed as additional techniques when they contribute to the defects characterization. A 60-cells polycrystalline module has been ad hoc manufactured for this research, with different defective and non-defective cells. All cells are accessible from the backside of the module and the module includes similar kinds of defects in the same bypass string. This paper characterizes different defects of PV modules to control, mitigate or eliminate their influence and being able to do a quality assessment of a whole PV module, relating the individual cells performance with the combination of defective and non-defective cells within the module strings, with the objective of determining their interaction and mismatch effects, apart from their discrete performance.

Suggested Citation

  • Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Alonso-García, María del Carmen & Santos, José Domingo & Morales-Aragonés, José Ignacio & Alonso-Gómez, Víctor & Moretón-Fernández, Ángel & González, 2020. "Nondestructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I–V curves and visual tests: Experimental study and comparison," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220310379
    DOI: 10.1016/j.energy.2020.117930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220310379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Davis, Kristopher O. & Rodgers, Marianne P. & Scardera, Giuseppe & Brooker, R. Paul & Seigneur, Hubert & Mohajeri, Nahid & Dhere, Neelkanth G. & Wohlgemuth, John & Schneller, Eric & Shiradkar, Narendr, 2016. "Manufacturing metrology for c-Si module reliability and durability Part II: Cell manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 225-252.
    3. Du, Bolun & Yang, Ruizhen & He, Yunze & Wang, Feng & Huang, Shoudao, 2017. "Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1117-1151.
    4. Dong Ji & Cai Zhang & Mingsong Lv & Ye Ma & Nan Guan, 2017. "Photovoltaic Array Fault Detection by Automatic Reconfiguration," Energies, MDPI, vol. 10(5), pages 1-13, May.
    5. Chine, W. & Mellit, A. & Pavan, A. Massi & Kalogirou, S.A., 2014. "Fault detection method for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 66(C), pages 99-110.
    6. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    7. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Duque-Pérez, Oscar, 2019. "Quantitative failure rates and modes analysis in photovoltaic plants," Energy, Elsevier, vol. 183(C), pages 825-836.
    8. Li, Guiqiang & Akram, M.W. & Jin, Yi & Chen, Xiao & Zhu, Changan & Ahmad, Ashfaq & Arshad, R.H. & Zhao, Xudong, 2019. "Thermo-mechanical behavior assessment of smart wire connected and busbarPV modules during production, transportation, and subsequent field loading stages," Energy, Elsevier, vol. 168(C), pages 931-945.
    9. Schneller, Eric J. & Brooker, R. Paul & Shiradkar, Narendra S. & Rodgers, Marianne P. & Dhere, Neelkanth G. & Davis, Kristopher O. & Seigneur, Hubert P. & Mohajeri, Nahid & Wohlgemuth, John & Scardera, 2016. "Manufacturing metrology for c-Si module reliability and durability Part III: Module manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 992-1016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V S Bharath Kurukuru & Ahteshamul Haque & Arun Kumar Tripathy & Mohammed Ali Khan, 2022. "Machine learning framework for photovoltaic module defect detection with infrared images," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1771-1787, August.
    2. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    3. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    4. Hubert Ruta & Tomasz Krakowski & Paweł Lonkwic, 2022. "Optimisation of the Magnetic Circuit of a Measuring Head for Diagnostics of Steel-Polyurethane Load-Carrying Belts Using Numerical Methods," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    5. Héctor Felipe Mateo Romero & Luis Hernández-Callejo & Miguel Ángel González Rebollo & Valentín Cardeñoso-Payo & Victor Alonso Gómez & Hugo Jose Bello & Ranganai Tawanda Moyo & Jose Ignacio Morales Ara, 2023. "Synthetic Dataset of Electroluminescence Images of Photovoltaic Cells by Deep Convolutional Generative Adversarial Networks," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    6. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    7. Kellil, N. & Aissat, A. & Mellit, A., 2023. "Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions," Energy, Elsevier, vol. 263(PC).
    8. Zhao, Xiaolong & Song, Chonghui & Zhang, Haifeng & Sun, Xianrui & Zhao, Jing, 2023. "HRNet-based automatic identification of photovoltaic module defects using electroluminescence images," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    2. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.
    3. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    4. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    5. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    6. Aghaei, M. & Fairbrother, A. & Gok, A. & Ahmad, S. & Kazim, S. & Lobato, K. & Oreski, G. & Reinders, A. & Schmitz, J. & Theelen, M. & Yilmaz, P. & Kettle, J., 2022. "Review of degradation and failure phenomena in photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Lin, Wenye & Ma, Zhenjun & Li, Kehua & Tyagi, V.V. & Pandey, A.K., 2021. "A dynamic simulation platform for fault modelling and characterisation of building integrated photovoltaics," Renewable Energy, Elsevier, vol. 179(C), pages 963-981.
    8. Fabian Schoden & Anna Katharina Schnatmann & Tomasz Blachowicz & Hildegard Manz-Schumacher & Eva Schwenzfeier-Hellkamp, 2022. "Circular Design Principles Applied on Dye-Sensitized Solar Cells," Sustainability, MDPI, vol. 14(22), pages 1-32, November.
    9. Oliveira, Michele Cândida Carvalho de & Diniz Cardoso, Antônia Sonia Alves & Viana, Marcelo Machado & Lins, Vanessa de Freitas Cunha, 2018. "The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2299-2317.
    10. Zhang, Jinxia & Chen, Xinyi & Wei, Haikun & Zhang, Kanjian, 2024. "A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation," Applied Energy, Elsevier, vol. 355(C).
    11. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    12. Jingsheng Huang & Yaojie Sun & He Wang & Junjun Zhang, 2019. "Regular and Irregular Performance Variation of Module String and Occurred Conditions for Potential Induced Degradation-Affected Crystalline Silicon Photovoltaic Power Plants," Energies, MDPI, vol. 12(22), pages 1-13, November.
    13. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    14. Chiwu Bu & Tao Liu & Tao Wang & Hai Zhang & Stefano Sfarra, 2023. "A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images," Energies, MDPI, vol. 16(9), pages 1-13, April.
    15. Bingqiang Li & Saleem Riaz & Yiyun Zhao, 2023. "Experimental Validation of Iterative Learning Control for DC/DC Power Converters," Energies, MDPI, vol. 16(18), pages 1-16, September.
    16. Zhang, Minhui & Zhang, Qin & Zhou, Dequn & Wang, Lei, 2021. "Punishment or reward? Strategies of stakeholders in the quality of photovoltaic plants based on evolutionary game analysis in China," Energy, Elsevier, vol. 220(C).
    17. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    18. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    19. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    20. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220310379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.