IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224009952.html
   My bibliography  Save this article

Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives

Author

Listed:
  • Tang, Wuqin
  • Yang, Qiang
  • Dai, Zhou
  • Yan, Wenjun

Abstract

The energy production efficiency of photovoltaic (PV) systems can be degraded due to the complicated operating environment. Given the huge installed capacity of large-scale PV farms, intelligent operation and maintenance techniques and strategies are required to keep the healthy operation of the photovoltaic system. A complete inspection system, which is a key part of the intelligent operation and maintenance system, should focus on the following issues: defects types and mechanisms, defects detection methods, IoT techniques and UAV-based inspection methods. In this review, a comprehensive study is proposed to review and conclude the research advance and the prospects. In particular, given the complicated operation condition, we first review the environmental factor causing the defects and the corresponding possible degradation for PV modules. Then, the defect type and detection techniques are discussed and analyzed. Due to the strong ability for feature extraction, deep learning is a useful tool for defect detection of PV modules. Considering the location and geographical characteristics, conventional manual inspection is inefficient and even infeasible in practice. IoT techniques and UAV-based systems are utilized more and more popular, which are also discussed and summarized in this review. Due to the limit of the I/V sensors in the PV plants, this work reviewed the UAV-based system in detail, which has high efficiency for inspection and is widely used in industry, especially for visible and IR image-based systems. With technological advances in image sensors, the UAV-based system mounted with an Electroluminescence (EL) camera also presents huge potential. Finally, the conclusion and future direction for intelligent inspection and defect detection are provided.

Suggested Citation

  • Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009952
    DOI: 10.1016/j.energy.2024.131222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    2. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    3. Rico Espinosa, Alejandro & Bressan, Michael & Giraldo, Luis Felipe, 2020. "Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 249-256.
    4. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Isidoro Lillo-Bravo & Pablo González-Martínez & Miguel Larrañeta & José Guasumba-Codena, 2018. "Impact of Energy Losses Due to Failures on Photovoltaic Plant Energy Balance," Energies, MDPI, vol. 11(2), pages 1-23, February.
    6. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Survey of maintenance management for photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Charabi, Yassine & Gastli, Adel, 2013. "Integration of temperature and dust effects in siting large PV power plant in hot arid area," Renewable Energy, Elsevier, vol. 57(C), pages 635-644.
    8. Akram, M. Waqar & Li, Guiqiang & Jin, Yi & Chen, Xiao & Zhu, Changan & Zhao, Xudong & Khaliq, Abdul & Faheem, M. & Ahmad, Ashfaq, 2019. "CNN based automatic detection of photovoltaic cell defects in electroluminescence images," Energy, Elsevier, vol. 189(C).
    9. Lu, Hao & Lu, Lin & Wang, Yuanhao, 2016. "Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building," Applied Energy, Elsevier, vol. 180(C), pages 27-36.
    10. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    11. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    12. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    13. Ullah, Asad & Amin, Amir & Haider, Turab & Saleem, Murtaza & Butt, Nauman Zafar, 2020. "Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan," Renewable Energy, Elsevier, vol. 150(C), pages 456-468.
    14. Di Tommaso, Antonio & Betti, Alessandro & Fontanelli, Giacomo & Michelozzi, Benedetto, 2022. "A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle," Renewable Energy, Elsevier, vol. 193(C), pages 941-962.
    15. Dhaouadi, Rached & Al-Othman, Amani & Aidan, Ahmed A. & Tawalbeh, Muhammad & Zannerni, Rawan, 2021. "A characterization study for the properties of dust particles collected on photovoltaic (PV) panels in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 171(C), pages 133-140.
    16. Wang, Youyang & Li, Liying & Sun, Yifan & Xu, Jinjia & Jia, Yun & Hong, Jianyu & Hu, Xiaobo & Weng, Guoen & Luo, Xianjia & Chen, Shaoqiang & Zhu, Ziqiang & Chu, Junhao & Akiyama, Hidefumi, 2021. "Adaptive automatic solar cell defect detection and classification based on absolute electroluminescence imaging," Energy, Elsevier, vol. 229(C).
    17. Muehleisen, Wolfgang & Eder, Gabriele C. & Voronko, Yuliya & Spielberger, Markus & Sonnleitner, Horst & Knoebl, Karl & Ebner, Rita & Ujvari, Gusztav & Hirschl, Christina, 2018. "Outdoor detection and visualization of hailstorm damages of photovoltaic plants," Renewable Energy, Elsevier, vol. 118(C), pages 138-145.
    18. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    19. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Alonso-García, María del Carmen & Santos, José Domingo & Morales-Aragonés, José Ignacio & Alonso-Gómez, Víctor & Moretón-Fernández, Ángel & González, 2020. "Nondestructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I–V curves and visual tests: Experimental study and comparison," Energy, Elsevier, vol. 205(C).
    20. Cavieres, Robinson & Barraza, Rodrigo & Estay, Danilo & Bilbao, José & Valdivia-Lefort, Patricio, 2022. "Automatic soiling and partial shading assessment on PV modules through RGB images analysis," Applied Energy, Elsevier, vol. 306(PA).
    21. Fan, Siyuan & Wang, Xiao & Cao, Shengxian & Wang, Yu & Zhang, Yanhui & Liu, Bingzheng, 2022. "A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels," Energy, Elsevier, vol. 252(C).
    22. Enaganti, Prasanth K. & Bhattacharjee, Ankur & Ghosh, Aritra & Chanchangi, Yusuf N. & Chakraborty, Chanchal & Mallick, Tapas K. & Goel, Sanket, 2022. "Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems," Energy, Elsevier, vol. 239(PC).
    23. Rahman, Md Momtazur & Khan, Imran & Alameh, Kamal, 2021. "Potential measurement techniques for photovoltaic module failure diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    24. Alshawaf, Mohammad & Poudineh, Rahmatallah & Alhajeri, Nawaf S., 2020. "Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    25. Zhang, Jinxia & Chen, Xinyi & Wei, Haikun & Zhang, Kanjian, 2024. "A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation," Applied Energy, Elsevier, vol. 355(C).
    26. Chen, Jinxin & Pan, Guobing & Ouyang, Jing & Ma, Jin & Fu, Lei & Zhang, Libin, 2020. "Study on impacts of dust accumulation and rainfall on PV power reduction in East China," Energy, Elsevier, vol. 194(C).
    27. Ghazi, Sanaz & Ip, Kenneth, 2014. "The effect of weather conditions on the efficiency of PV panels in the southeast of UK," Renewable Energy, Elsevier, vol. 69(C), pages 50-59.
    28. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    29. Bouraiou, Ahmed & Hamouda, Messaoud & Chaker, Abdelkader & Lachtar, Salah & Neçaibia, Ammar & Boutasseta, Nadir & Mostefaoui, Mohammed, 2017. "Experimental evaluation of the performance and degradation of single crystalline silicon photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 132(C), pages 22-30.
    30. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    2. Kellil, N. & Aissat, A. & Mellit, A., 2023. "Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions," Energy, Elsevier, vol. 263(PC).
    3. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    5. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. He, Beihua & Lu, Hao & Zheng, Chuanxiao & Wang, Yanlin, 2023. "Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review," Energy, Elsevier, vol. 263(PE).
    7. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    9. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    10. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    11. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    12. Fan, Siyuan & Wang, Xiao & Wang, Zun & Sun, Bo & Zhang, Zhenhai & Cao, Shengxian & Zhao, Bo & Wang, Yu, 2022. "A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels," Renewable Energy, Elsevier, vol. 201(P1), pages 172-180.
    13. Fan, Siyuan & Wang, Xiao & Cao, Shengxian & Wang, Yu & Zhang, Yanhui & Liu, Bingzheng, 2022. "A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels," Energy, Elsevier, vol. 252(C).
    14. Hu, Weiwei & Li, Xingcai & Wang, Juan & Tian, Zihang & Zhou, Bin & Wu, Jinpeng & Li, Runmin & Li, Wencang & Ma, Ning & Kang, Jixuan & Wang, Yong & Tian, Jialong & Dai, Jibin, 2022. "Experimental research on the convective heat transfer coefficient of photovoltaic panel," Renewable Energy, Elsevier, vol. 185(C), pages 820-826.
    15. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    17. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    18. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    19. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    20. Liu, Weidong & Jiang, Xiaohua & Li, Shaoshuai & Luo, Ji & Wen, Gen, 2020. "Photovoltaic module regional clustering in mainland China and application based on factors influencing field reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.