IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7175-d1132640.html
   My bibliography  Save this article

Synthetic Dataset of Electroluminescence Images of Photovoltaic Cells by Deep Convolutional Generative Adversarial Networks

Author

Listed:
  • Héctor Felipe Mateo Romero

    (Departamento Fisica de la Materia Condensada, Universidad de Valladolid, 47011 Valladolid, Spain)

  • Luis Hernández-Callejo

    (Departamento Ingeniería Agrícola y Forestal, Universidad de Valladolid, 47002 Valladolid, Spain)

  • Miguel Ángel González Rebollo

    (Departamento Fisica de la Materia Condensada, Universidad de Valladolid, 47011 Valladolid, Spain)

  • Valentín Cardeñoso-Payo

    (Departamento Informatica, Universidad de Valladolid, 47011 Valladolid, Spain)

  • Victor Alonso Gómez

    (Departamento de Física, Universidad de Valladolid, 47002 Valladolid, Spain)

  • Hugo Jose Bello

    (Departamento de Matemática Aplicada, Universidad de Valladolid, 47011 Valladolid, Spain)

  • Ranganai Tawanda Moyo

    (Department of Mechanical Engineering, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa)

  • Jose Ignacio Morales Aragonés

    (Departamento de Física, Universidad de Valladolid, 47002 Valladolid, Spain)

Abstract

Affordable and clean energy is one of the Sustainable Development Goals (SDG). SDG compliance and economic crises have boosted investment in solar energy as an important source of renewable generation. Nevertheless, the complex maintenance of solar plants is behind the increasing trend to use advanced artificial intelligence techniques, which critically depend on big amounts of data. In this work, a model based on Deep Convolutional Generative Adversarial Neural Networks (DCGANs) was trained in order to generate a synthetic dataset made of 10,000 electroluminescence images of photovoltaic cells, which extends a smaller dataset of experimentally acquired images. The energy output of the virtual cells associated with the synthetic dataset is predicted using a Random Forest regression model trained from real IV curves measured on real cells during the image acquisition process. The assessment of the resulting synthetic dataset gives an Inception Score of 2.3 and a Fréchet Inception Distance of 15.8 to the real original images, which ensures the excellent quality of the generated images. The final dataset can thus be later used to improve machine learning algorithms or to analyze patterns of solar cell defects.

Suggested Citation

  • Héctor Felipe Mateo Romero & Luis Hernández-Callejo & Miguel Ángel González Rebollo & Valentín Cardeñoso-Payo & Victor Alonso Gómez & Hugo Jose Bello & Ranganai Tawanda Moyo & Jose Ignacio Morales Ara, 2023. "Synthetic Dataset of Electroluminescence Images of Photovoltaic Cells by Deep Convolutional Generative Adversarial Networks," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7175-:d:1132640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Alonso-García, María del Carmen & Santos, José Domingo & Morales-Aragonés, José Ignacio & Alonso-Gómez, Víctor & Moretón-Fernández, Ángel & González, 2020. "Nondestructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I–V curves and visual tests: Experimental study and comparison," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhencheng Fan & Zheng Yan & Shiping Wen, 2023. "Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health," Sustainability, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hubert Ruta & Tomasz Krakowski & Paweł Lonkwic, 2022. "Optimisation of the Magnetic Circuit of a Measuring Head for Diagnostics of Steel-Polyurethane Load-Carrying Belts Using Numerical Methods," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    2. V S Bharath Kurukuru & Ahteshamul Haque & Arun Kumar Tripathy & Mohammed Ali Khan, 2022. "Machine learning framework for photovoltaic module defect detection with infrared images," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1771-1787, August.
    3. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    4. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    5. Zhao, Xiaolong & Song, Chonghui & Zhang, Haifeng & Sun, Xianrui & Zhao, Jing, 2023. "HRNet-based automatic identification of photovoltaic module defects using electroluminescence images," Energy, Elsevier, vol. 267(C).
    6. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    7. Kellil, N. & Aissat, A. & Mellit, A., 2023. "Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7175-:d:1132640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.