IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220307908.html
   My bibliography  Save this article

Development of an integrated energy system for smart communities

Author

Listed:
  • Abu-Rayash, Azzam
  • Dincer, Ibrahim

Abstract

This paper introduces a newly developed integrated multigeneration energy system designed for a smart community. The system constitutes of various renewable energy sources, including solar and wind farms, and a quintuple geothermal system with reinjection. The system meets the demand and provides the main commodities of a small city with 5000 houses for their electricity, space heating, domestic hot water, and fresh water. The system is analyzed both energetically and exergetically using thermodynamic principles. The overall energy and exergy efficiencies of the proposed system are found to be 81.3% and 84.6% respectively. In addition, the energy and exergy efficiencies of the PVT system are 57.9% and 49.2%, respectively. The total electricity production is evaluated at 430 MW, while the capacity for domestic hot water is 20 MW. District heating is incorporated into this system at a capacity of 50 MW. The energy and exergy efficiencies of the geothermal system are found to be 27.6% and 35.7% respectively. Within the organic Rankine cycle, the exergy destruction at the boiler and the condenser add up to 15.8 MW, which makes up 94% of the total exergy destruction of this cycle. Moreover, a number of parametric studies are conducted to evaluate the level of influence that key parameters have on each system and consequently the overall system performance.

Suggested Citation

  • Abu-Rayash, Azzam & Dincer, Ibrahim, 2020. "Development of an integrated energy system for smart communities," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220307908
    DOI: 10.1016/j.energy.2020.117683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220307908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik, 2018. "Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach," Energy, Elsevier, vol. 151(C), pages 94-102.
    2. Al-Sulaiman, Fahad A. & Hamdullahpur, Feridun & Dincer, Ibrahim, 2011. "Performance comparison of three trigeneration systems using organic rankine cycles," Energy, Elsevier, vol. 36(9), pages 5741-5754.
    3. Ozgener, Onder, 2010. "Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings," Energy, Elsevier, vol. 35(1), pages 262-268.
    4. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    5. Bicer, Y. & Dincer, I. & Aydin, M., 2016. "Maximizing performance of fuel cell using artificial neural network approach for smart grid applications," Energy, Elsevier, vol. 116(P1), pages 1205-1217.
    6. Diuana, Fabio A. & Viviescas, Cindy & Schaeffer, Roberto, 2019. "An analysis of the impacts of wind power penetration in the power system of southern Brazil," Energy, Elsevier, vol. 186(C).
    7. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.
    8. Dali, Mehdi & Belhadj, Jamel & Roboam, Xavier, 2010. "Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: Control and energy management – Experimental investigation," Energy, Elsevier, vol. 35(6), pages 2587-2595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao Luo & Jinghui Wang & Ni Xiao & Linyan Yang & Weijie Zhao & Jialu Geng & Tao Lu & Mengshun Luo & Chenming Dong, 2022. "Low Carbon Economic Dispatch Optimization of Regional Integrated Energy Systems Considering Heating Network and P2G," Energies, MDPI, vol. 15(15), pages 1-14, July.
    2. Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
    3. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2021. "Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach," Energy, Elsevier, vol. 236(C).
    4. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudiu Vasile Kifor & Alexandru Olteanu & Mihai Zerbes, 2023. "Key Performance Indicators for Smart Energy Systems in Sustainable Universities," Energies, MDPI, vol. 16(3), pages 1-19, January.
    2. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    6. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    8. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    9. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    10. Nikolaos Efkarpidis & Andrija Goranović & Chen-Wei Yang & Martin Geidl & Ingo Herbst & Stefan Wilker & Thilo Sauter, 2022. "A Generic Framework for the Definition of Key Performance Indicators for Smart Energy Systems at Different Scales," Energies, MDPI, vol. 15(4), pages 1-30, February.
    11. Rödder, Maximilian & Frank, Lena & Kirschner, Daniel & Neef, Matthias & Adam, Mario, 2018. "EnergiBUS4home – Sustainable energy resourcing in low-energy buildings," Energy, Elsevier, vol. 159(C), pages 638-647.
    12. Hussain, Syed Asad & Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2023. "The perspective of energy poverty and 1st energy crisis of green transition," Energy, Elsevier, vol. 275(C).
    13. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    14. Sorknæs, Peter & Johannsen, Rasmus M. & Korberg, Andrei D. & Nielsen, Tore B. & Petersen, Uni R. & Mathiesen, Brian V., 2022. "Electrification of the industrial sector in 100% renewable energy scenarios," Energy, Elsevier, vol. 254(PB).
    15. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Fuentes González, Fabián & Webb, Janette & Sharmina, Maria & Hannon, Matthew & Braunholtz-Speight, Timothy & Pappas, Dimitrios, 2022. "Local energy businesses in the United Kingdom: Clusters and localism determinants based on financial ratios," Energy, Elsevier, vol. 239(PB).
    17. Ieva Pakere & Dagnija Blumberga & Anna Volkova & Kertu Lepiksaar & Agate Zirne, 2023. "Valorisation of Waste Heat in Existing and Future District Heating Systems," Energies, MDPI, vol. 16(19), pages 1-22, September.
    18. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    19. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    20. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Zhou, Jing & Zhang, Li & Fan, Lin & Yang, Zhaoming & Xie, Fei & Zuo, Lili & Zhang, Jinjun, 2023. "A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220307908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.