IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v116y2016ip1p1205-1217.html
   My bibliography  Save this article

Maximizing performance of fuel cell using artificial neural network approach for smart grid applications

Author

Listed:
  • Bicer, Y.
  • Dincer, I.
  • Aydin, M.

Abstract

This paper presents an artificial neural network (ANN) approach of a smart grid integrated proton exchange membrane (PEM) fuel cell and proposes a neural network model of a 6 kW PEM fuel cell. The data required to train the neural network model are generated by a model of 6 kW PEM fuel cell. After the model is trained and validated, it is used to analyze the dynamic behavior of the PEM fuel cell. The study results demonstrate that the model based on neural network approach is appropriate for predicting the outlet parameters. Various types of training methods, sample numbers and sample distribution methods are utilized to compare the results. The fuel cell stack efficiency considerably varies between 20% and 60%, according to input variables and models. The rapid changes in the input variables can be recovered within a short time period, such as 10 s. The obtained response graphs point out the load tracking features of ANN model and the projected changes in the input variables are controlled quickly in the study.

Suggested Citation

  • Bicer, Y. & Dincer, I. & Aydin, M., 2016. "Maximizing performance of fuel cell using artificial neural network approach for smart grid applications," Energy, Elsevier, vol. 116(P1), pages 1205-1217.
  • Handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:1205-1217
    DOI: 10.1016/j.energy.2016.10.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216314840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos, Diogo F.M. & Ferreira, Rui B. & Falcão, D.S. & Pinto, A.M.F.R., 2022. "Evaluation of a fuel cell system designed for unmanned aerial vehicles," Energy, Elsevier, vol. 253(C).
    2. Li, Tianyu & Liu, Huiying & Ding, Daolin, 2018. "Predictive energy management of fuel cell supercapacitor hybrid construction equipment," Energy, Elsevier, vol. 149(C), pages 718-729.
    3. En-Jui Liu & Yi-Hsuan Hung & Che-Wun Hong, 2021. "Improved Metaheuristic Optimization Algorithm Applied to Hydrogen Fuel Cell and Photovoltaic Cell Parameter Extraction," Energies, MDPI, vol. 14(3), pages 1-16, January.
    4. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    5. Raghuvamsi, Y & Teeparthi, Kiran, 2023. "A review on distribution system state estimation uncertainty issues using deep learning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Garcia-Villalobos, J., 2017. "Fuel cell-based CHP system modelling using Artificial Neural Networks aimed at developing techno-economic efficiency maximization control systems," Energy, Elsevier, vol. 123(C), pages 585-593.
    7. Alharbi, Abdullah G. & Olabi, A.G. & Rezk, Hegazy & Fathy, Ahmed & Abdelkareem, Mohammad Ali, 2024. "Optimized energy management and control strategy of photovoltaic/PEM fuel cell/batteries/supercapacitors DC microgrid system," Energy, Elsevier, vol. 290(C).
    8. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    9. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
    10. Taner, Tolga, 2018. "Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations," Energy, Elsevier, vol. 143(C), pages 284-294.
    11. Barzegari, Mohammad M. & Alizadeh, Ebrahim & Pahnabi, Amir H., 2017. "Grey-box modeling and model predictive control for cascade-type PEMFC," Energy, Elsevier, vol. 127(C), pages 611-622.
    12. Moazeni, Faegheh & Khazaei, Javad, 2020. "Electrochemical optimization and small-signal analysis of grid-connected polymer electrolyte membrane (PEM) fuel cells for renewable energy integration," Renewable Energy, Elsevier, vol. 155(C), pages 848-861.
    13. Yang, Duo & Pan, Rui & Wang, Yujie & Chen, Zonghai, 2019. "Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control," Energy, Elsevier, vol. 188(C).
    14. Yuan, Yi & Chen, Li & Lyu, Xingbao & Ning, Wenjing & Liu, Wenqi & Tao, Wen-Quan, 2024. "Modeling and optimization of a residential PEMFC-based CHP system under different operating modes," Applied Energy, Elsevier, vol. 353(PA).
    15. Danqi Su & Jiayang Zheng & Junjie Ma & Zizhe Dong & Zhangjie Chen & Yanzhou Qin, 2023. "Application of Machine Learning in Fuel Cell Research," Energies, MDPI, vol. 16(11), pages 1-32, May.
    16. Abu-Rayash, Azzam & Dincer, Ibrahim, 2020. "Development of an integrated energy system for smart communities," Energy, Elsevier, vol. 202(C).
    17. Li, Tianyu & Huang, Lingtao & Liu, Huiying, 2019. "Energy management and economic analysis for a fuel cell supercapacitor excavator," Energy, Elsevier, vol. 172(C), pages 840-851.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:1205-1217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.