IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v255y2022ics0360544222014153.html
   My bibliography  Save this article

Temporal-spatial scheduling of electric vehicles in AC/DC distribution networks

Author

Listed:
  • Luo, Lizi
  • He, Pinquan
  • Gu, Wei
  • Sheng, Wanxing
  • Liu, Keyan
  • Bai, Muke

Abstract

With the rapid development of power electronic technology, the AC/DC hybrid distribution network has become a new trend of distribution system architectures in recent years. And meanwhile, electric vehicles (EVs) equipped with both AC and DC charging interfaces tend to be utilized as ideally dispatchable resources in not only temporal but also spatial dimensions, whose charging/discharging schemes remarkably impact the secure and economical operation of distribution networks. In view of this background, this paper proposes a temporal-spatial scheduling model of EVs in AC/DC distribution networks, targeting at the optimum of the whole network losses as well as the inconveniences of EV users originated from following scheduling instructions. Besides the traditional constraints relevant to EVs’ temporal scheduling in just-AC distribution networks, the AC/DC hybrid topology and the restrictions for EVs’ spatial scheduling are properly involved in the proposed model. After a reasonable simplification procedure, the proposed model is represented as a Mixed Integer Quadratic Program (MIQP) problem that can be efficiently solved by off-the-shelf optimization algorithms. Through the analyses of a coupled electrical-geographical AC/DC distribution network, the proposed model can bring 6.3% and 6.8% cost savings respectively on two typical days.

Suggested Citation

  • Luo, Lizi & He, Pinquan & Gu, Wei & Sheng, Wanxing & Liu, Keyan & Bai, Muke, 2022. "Temporal-spatial scheduling of electric vehicles in AC/DC distribution networks," Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014153
    DOI: 10.1016/j.energy.2022.124512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Bifei & Chen, Haoyong, 2020. "Multi-objective energy management of multiple microgrids under random electric vehicle charging," Energy, Elsevier, vol. 208(C).
    2. Kakillioglu, Emre Anıl & Yıldız Aktaş, Melike & Fescioglu-Unver, Nilgun, 2022. "Self-controlling resource management model for electric vehicle fast charging stations with priority service," Energy, Elsevier, vol. 239(PC).
    3. Jordehi, A. Rezaee & Javadi, Mohammad Sadegh & Catalão, João P.S., 2021. "Day-ahead scheduling of energy hubs with parking lots for electric vehicles considering uncertainties," Energy, Elsevier, vol. 229(C).
    4. Hosseinnia, Hamed & Modarresi, Javad & Nazarpour, Daryoush, 2020. "Optimal eco-emission scheduling of distribution network operator and distributed generator owner under employing demand response program," Energy, Elsevier, vol. 191(C).
    5. Elma, Onur, 2020. "A dynamic charging strategy with hybrid fast charging station for electric vehicles," Energy, Elsevier, vol. 202(C).
    6. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2019. "Double layer home energy supervision strategies based on demand response and plug-in electric vehicle control for flattening power load curves in a smart grid," Energy, Elsevier, vol. 167(C), pages 312-324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hemmatpour, Mohammad Hasan & Rezaeian Koochi, Mohammad Hossein & Dehghanian, Pooria & Dehghanian, Payman, 2022. "Voltage and energy control in distribution systems in the presence of flexible loads considering coordinated charging of electric vehicles," Energy, Elsevier, vol. 239(PA).
    2. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    3. Rittichai Liemthong & Chitchai Srithapon & Prasanta K. Ghosh & Rongrit Chatthaworn, 2022. "Home Energy Management Strategy-Based Meta-Heuristic Optimization for Electrical Energy Cost Minimization Considering TOU Tariffs," Energies, MDPI, vol. 15(2), pages 1-22, January.
    4. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    5. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    6. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).
    7. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    8. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    9. Suryakiran, B.V. & Nizami, Sohrab & Verma, Ashu & Saha, Tapan Kumar & Mishra, Sukumar, 2023. "A DSO-based day-ahead market mechanism for optimal operational planning of active distribution network," Energy, Elsevier, vol. 282(C).
    10. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    11. Fescioglu-Unver, Nilgun & Yıldız Aktaş, Melike, 2023. "Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    13. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    14. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).
    15. Muhammad Saidu Aliero & Muhammad Asif & Imran Ghani & Muhammad Fermi Pasha & Seung Ryul Jeong, 2022. "Systematic Review Analysis on Smart Building: Challenges and Opportunities," Sustainability, MDPI, vol. 14(5), pages 1-28, March.
    16. Wang, Shubin & Li, Jiabao & Liu, Xinni & Zhao, Erlong & Eghbalian, Nasrin, 2022. "Multi-level charging stations for electric vehicles by considering ancillary generating and storage units," Energy, Elsevier, vol. 247(C).
    17. Natascia Andrenacci & Mauro Di Monaco & Giuseppe Tomasso, 2022. "Influence of Battery Aging on the Operation of a Charging Infrastructure," Energies, MDPI, vol. 15(24), pages 1-18, December.
    18. Javadi, Mohammad Sadegh & Esmaeel Nezhad, Ali & Jordehi, Ahmad Rezaee & Gough, Matthew & Santos, Sérgio F. & Catalão, João P.S., 2022. "Transactive energy framework in multi-carrier energy hubs: A fully decentralized model," Energy, Elsevier, vol. 238(PB).
    19. Cong Zhang & Qun Gao & Ke Peng & Yan Jiang, 2023. "An EV Charging Guidance Strategy Based on the Hierarchical Comprehensive Evaluation Method," Energies, MDPI, vol. 16(7), pages 1-16, March.
    20. Seyed Hasan Mirbarati & Najme Heidari & Amirhossein Nikoofard & Mir Sayed Shah Danish & Mahdi Khosravy, 2022. "Techno-Economic-Environmental Energy Management of a Micro-Grid: A Mixed-Integer Linear Programming Approach," Sustainability, MDPI, vol. 14(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.