IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1986-d233808.html
   My bibliography  Save this article

Local Energy Storage and Stochastic Modeling for Ultrafast Charging Stations

Author

Listed:
  • Yorick Ligen

    (Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire d’Electrochimie Physique et Analytique (LEPA), Rue de l’Industrie 17, CH-1951 Sion, Switzerland)

  • Heron Vrubel

    (Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire d’Electrochimie Physique et Analytique (LEPA), Rue de l’Industrie 17, CH-1951 Sion, Switzerland)

  • Hubert Girault

    (Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire d’Electrochimie Physique et Analytique (LEPA), Rue de l’Industrie 17, CH-1951 Sion, Switzerland)

Abstract

Multi-stall fast charging stations are often thought to require megawatt-range grid connections. The power consumption profile of such stations results in high cost penalties due to monthly power peaks and expensive linkage fees. A local energy storage system (ESS) can be used to address peak power demands. However, no appropriate sizing method is available to match specific constraints, such as the contracted power available from the grid and the projected recharging demand. A stochastic distribution of charging events was used in this paper to model power demand profiles at the station, with a one minute resolution. Based on 100 simulated months, we propose an optimum number of charging points, and we developed an algorithm to return the required local ESS capacity as a function of the available grid connection. The role of ESSs in the range of 100 kWh to 1 MWh was studied for all stations with up to 2000 charging events per week. The relevance of ESS implementation was assessed along three parameters: the number of charging points, the available grid connection, and the ESS capacity. This work opens new possibilities for multi-stall charging station deployment in locations with limited access to the medium voltage grid, and provides sizing guidelines for effective ESSs implementation. In addition, it helps build business cases for charging station operators in regions with high demand charges.

Suggested Citation

  • Yorick Ligen & Heron Vrubel & Hubert Girault, 2019. "Local Energy Storage and Stochastic Modeling for Ultrafast Charging Stations," Energies, MDPI, vol. 12(10), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1986-:d:233808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1986/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1986/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    2. Bryden, Thomas S. & Hilton, George & Cruden, Andrew & Holton, Tim, 2018. "Electric vehicle fast charging station usage and power requirements," Energy, Elsevier, vol. 152(C), pages 322-332.
    3. Ding, Huajie & Hu, Zechun & Song, Yonghua, 2015. "Value of the energy storage system in an electric bus fast charging station," Applied Energy, Elsevier, vol. 157(C), pages 630-639.
    4. Aziz, Muhammad & Oda, Takuya & Ito, Masakazu, 2016. "Battery-assisted charging system for simultaneous charging of electric vehicles," Energy, Elsevier, vol. 100(C), pages 82-90.
    5. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    6. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    7. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    8. Rubino, Luigi & Capasso, Clemente & Veneri, Ottorino, 2017. "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility," Applied Energy, Elsevier, vol. 207(C), pages 438-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adu-Gyamfi, Gibbson & Song, Huaming & Obuobi, Bright & Nketiah, Emmanuel & Wang, Hong & Cudjoe, Dan, 2022. "Who will adopt? Investigating the adoption intention for battery swap technology for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    3. Akhtar Hussain & Van-Hai Bui & Ju-Won Baek & Hak-Man Kim, 2019. "Stationary Energy Storage System for Fast EV Charging Stations: Simultaneous Sizing of Battery and Converter," Energies, MDPI, vol. 12(23), pages 1-17, November.
    4. Akhtar Hussain & Van-Hai Bui & Ju-Won Baek & Hak-Man Kim, 2020. "Stationary Energy Storage System for Fast EV Charging Stations: Optimality Analysis and Results Validation," Energies, MDPI, vol. 13(1), pages 1-18, January.
    5. Adu-Gyamfi, Gibbson & Song, Huaming & Nketiah, Emmanuel & Obuobi, Bright & Adjei, Mavis & Cudjoe, Dan, 2022. "Determinants of adoption intention of battery swap technology for electric vehicles," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
    2. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    3. Mortaz, Ebrahim & Vinel, Alexander & Dvorkin, Yury, 2019. "An optimization model for siting and sizing of vehicle-to-grid facilities in a microgrid," Applied Energy, Elsevier, vol. 242(C), pages 1649-1660.
    4. Elio Chiodo & Maurizio Fantauzzi & Davide Lauria & Fabio Mottola, 2018. "A Probabilistic Approach for the Optimal Sizing of Storage Devices to Increase the Penetration of Plug-in Electric Vehicles in Direct Current Networks," Energies, MDPI, vol. 11(5), pages 1-20, May.
    5. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    6. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    7. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    8. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    9. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    10. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    11. García-Vázquez, Carlos A. & Llorens-Iborra, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio & Jurado, Francisco, 2017. "Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches," Energy, Elsevier, vol. 137(C), pages 42-57.
    12. Jefimowski, Włodzimierz & Szeląg, Adam & Steczek, Marcin & Nikitenko, Anatolii, 2020. "Vanadium redox flow battery parameters optimization in a transportation microgrid: A case study," Energy, Elsevier, vol. 195(C).
    13. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    14. Elma, Onur, 2020. "A dynamic charging strategy with hybrid fast charging station for electric vehicles," Energy, Elsevier, vol. 202(C).
    15. Yuan-Yuan Wang & Yuan-Ying Chi & Jin-Hua Xu & Jia-Lin Li, 2021. "Consumer Preferences for Electric Vehicle Charging Infrastructure Based on the Text Mining Method," Energies, MDPI, vol. 14(15), pages 1-20, July.
    16. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    17. Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
    18. Antonia Golab & Sebastian Zwickl-Bernhard & Hans Auer, 2022. "Minimum-Cost Fast-Charging Infrastructure Planning for Electric Vehicles along the Austrian High-Level Road Network," Energies, MDPI, vol. 15(6), pages 1-26, March.
    19. Naireeta Deb & Rajendra Singh & Richard R. Brooks & Kevin Bai, 2021. "A Review of Extremely Fast Charging Stations for Electric Vehicles," Energies, MDPI, vol. 14(22), pages 1-27, November.
    20. Abood Mourad & Martin Hennebel & Ahmed Amrani & Amira Ben Hamida, 2021. "Analyzing the Fast-Charging Potential for Electric Vehicles with Local Photovoltaic Power Production in French Suburban Highway Network," Energies, MDPI, vol. 14(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1986-:d:233808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.