IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923011236.html
   My bibliography  Save this article

Life cycle optimization framework of charging–swapping integrated energy supply systems for multi-type vehicles

Author

Listed:
  • Zhu, Feiqin
  • Li, Yalun
  • Lu, Languang
  • Wang, Hewu
  • Li, Liguo
  • Li, Kexin
  • Ouyang, Minggao

Abstract

The energy supply infrastructure is an important guarantee for vehicle electrification. Its economy, service capability and grid friendliness are critical factors drawing wide attention. To reduce the cost of energy storage devices that alleviate the high-power grid impact from fast charging station, this study proposes a novel energy supply system configuration that integrates fast charging for passenger vehicles and battery swapping for heavy trucks, and discharges the large-capacity swapping batteries to support fast charging. The influences of station configurations, including in-station batteries, charging and swapping equipment on the system economy, service quality, and grid capacity demand are revealed through system modeling and analysis. The impact of the charging time on battery degradation during operation is also explored. Moreover, a life cycle optimization framework for the charging–swapping integrated system is formulated, together with the complementary control strategy that realizes bidirectional energy coupling of fast charging and battery swapping loads. In this framework, the battery swapping service model is established to quantify the service quality; the electrochemical mechanism model is used to evaluate the battery degradation during charging and discharging processes; and the life cycle cost model is established by integrating the investment and operation costs of the energy supply system. On this basis, the design and control variables are collaboratively optimized towards the maximal life cycle benefits. Based on the actual load characteristics of charging and swapping stations, a comparative study is performed for the proposed operation scheme and the general service quality-prioritized scheme. The obtained results show that the maximum station power is reduced by more than 0.6 MW, and the total life cycle cost of the energy supply system is reduced by over 1 million RMB under the proposed scheme, verifying its notable effect of life cycle economy improvement.

Suggested Citation

  • Zhu, Feiqin & Li, Yalun & Lu, Languang & Wang, Hewu & Li, Liguo & Li, Kexin & Ouyang, Minggao, 2023. "Life cycle optimization framework of charging–swapping integrated energy supply systems for multi-type vehicles," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923011236
    DOI: 10.1016/j.apenergy.2023.121759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923011236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jie & Menghwar, Mohan & Asghar, Ehtisham & Kumar Panjwani, Manoj & Liu, Yongqian, 2019. "Real-time energy management for a smart-community microgrid with battery swapping and renewables," Applied Energy, Elsevier, vol. 238(C), pages 180-194.
    2. Muratori, Matteo & Elgqvist, Emma & Cutler, Dylan & Eichman, Joshua & Salisbury, Shawn & Fuller, Zachary & Smart, John, 2019. "Technology solutions to mitigate electricity cost for electric vehicle DC fast charging," Applied Energy, Elsevier, vol. 242(C), pages 415-423.
    3. Ding, Huajie & Hu, Zechun & Song, Yonghua, 2015. "Value of the energy storage system in an electric bus fast charging station," Applied Energy, Elsevier, vol. 157(C), pages 630-639.
    4. Luo, Yugong & Feng, Guixuan & Wan, Shuang & Zhang, Shuwei & Li, Victor & Kong, Weiwei, 2020. "Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network," Energy, Elsevier, vol. 194(C).
    5. Wang, Shuoqi & Guo, Dongxu & Han, Xuebing & Lu, Languang & Sun, Kai & Li, Weihan & Sauer, Dirk Uwe & Ouyang, Minggao, 2020. "Impact of battery degradation models on energy management of a grid-connected DC microgrid," Energy, Elsevier, vol. 207(C).
    6. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elma, Onur, 2020. "A dynamic charging strategy with hybrid fast charging station for electric vehicles," Energy, Elsevier, vol. 202(C).
    2. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Wang, Ziqi & Hou, Sizu, 2023. "A real-time strategy for vehicle-to-station recommendation in battery swapping mode," Energy, Elsevier, vol. 272(C).
    4. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    5. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    6. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    7. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    8. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    9. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    10. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    11. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    12. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    13. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    14. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    15. Liu, Xinghua & Li, Siqi & Tian, Jiaqiang & Wei, Zhongbao & Wang, Peng, 2023. "Health estimation of lithium-ion batteries with voltage reconstruction and fusion model," Energy, Elsevier, vol. 282(C).
    16. Shariatio, O. & Coker, P.J. & Smith, S.T. & Potter, B. & Holderbaum, W., 2024. "An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems," Applied Energy, Elsevier, vol. 369(C).
    17. Park, Sung-Won & Son, Sung-Yong, 2023. "Techno-economic analysis for the electric vehicle battery aging management of charge point operator," Energy, Elsevier, vol. 280(C).
    18. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    19. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    20. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923011236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.