IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222002663.html
   My bibliography  Save this article

Optimal analysis for facility configuration and energy management on electric light commercial vehicle charging

Author

Listed:
  • Tang, Yanyan
  • Zhang, Qi
  • Wen, Zongguo
  • Bunn, Derek
  • Martin, Jesus Nieto

Abstract

Whilst the widespread adoption of electric vans is necessary to improve urban air quality and reduce carbon emissions, it is also self-evident that adequate charging stations are a precondition. However, the investment case for basic charging stations without public subsidies is challenging. In the context of a London case study, four business models are compared, which integrate solar power generation and new/second-life battery storage system with the basic charging facilities. Considering the uncertainties of electricity tariff and solar generation, the optimal infrastructure investment and operational planning has been formulated as a two-stage stochastic optimization model. The results show that: (i) in the integrated business models, the return on investment and charger installations could be increased by up to 5.39% and 17.06% respectively, and the carbon intensity could be reduced by up to 8.13%; (ii) the nondiscriminatory grant annualized as 50 £ is not sufficient, and a differentiated government subsidy policy may be more conducive to achieving a positive return on investment, such as 50 £ for fast chargers and 100 £ for rapid chargers; (iii) in the integrated business models, fast chargers undertake more vehicle-to-grid electricity exchange with the pattern adoption rate increased by up to 52.38%, while rapid chargers mainly ensure the timely charging completion with the usage frequency increased by up to 2.82%.

Suggested Citation

  • Tang, Yanyan & Zhang, Qi & Wen, Zongguo & Bunn, Derek & Martin, Jesus Nieto, 2022. "Optimal analysis for facility configuration and energy management on electric light commercial vehicle charging," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002663
    DOI: 10.1016/j.energy.2022.123363
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Funke, Simon Árpád & Plötz, Patrick & Wietschel, Martin, 2019. "Invest in fast-charging infrastructure or in longer battery ranges? A cost-efficiency comparison for Germany," Applied Energy, Elsevier, vol. 235(C), pages 888-899.
    2. Muratori, Matteo & Elgqvist, Emma & Cutler, Dylan & Eichman, Joshua & Salisbury, Shawn & Fuller, Zachary & Smart, John, 2019. "Technology solutions to mitigate electricity cost for electric vehicle DC fast charging," Applied Energy, Elsevier, vol. 242(C), pages 415-423.
    3. Tong, Shi Jie & Same, Adam & Kootstra, Mark A. & Park, Jae Wan, 2013. "Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 104(C), pages 740-750.
    4. Zongguo Wen & Huifang Li & Xueying Zhang & Jason Chi Kin Lee & Chang Xu, 2017. "Low‐carbon policy options and scenario analysis on CO 2 mitigation potential in China's transportation sector," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 40-52, February.
    5. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    6. Bryden, Thomas S. & Hilton, George & Cruden, Andrew & Holton, Tim, 2018. "Electric vehicle fast charging station usage and power requirements," Energy, Elsevier, vol. 152(C), pages 322-332.
    7. Chandra Mouli, G.R. & Bauer, P. & Zeman, M., 2016. "System design for a solar powered electric vehicle charging station for workplaces," Applied Energy, Elsevier, vol. 168(C), pages 434-443.
    8. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Shafie-khah, M. & Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, P. & Moghaddam, M.P. & Sheikh-El-Eslami, M.K. & Catalão, J.P.S., 2016. "Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability," Applied Energy, Elsevier, vol. 162(C), pages 601-612.
    10. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    11. Tang, Yanyan & Zhang, Qi & Mclellan, Benjamin & Li, Hailong, 2018. "Study on the impacts of sharing business models on economic performance of distributed PV-Battery systems," Energy, Elsevier, vol. 161(C), pages 544-558.
    12. Schroeder, Andreas & Traber, Thure, 2012. "The economics of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 43(C), pages 136-144.
    13. Jason C. K. Lee & Zongguo Wen, 2018. "Pathways for greening the supply of rare earth elements in China," Nature Sustainability, Nature, vol. 1(10), pages 598-605, October.
    14. Figueiredo, Raquel & Nunes, Pedro & Brito, Miguel C., 2017. "The feasibility of solar parking lots for electric vehicles," Energy, Elsevier, vol. 140(P1), pages 1182-1197.
    15. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    16. Jeon, Chanwoong & Shin, Juneseuk, 2014. "Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case," Energy, Elsevier, vol. 66(C), pages 447-457.
    17. Nourinejad, Mehdi & Wenneman, Adam & Habib, Khandker Nurul & Roorda, Matthew J., 2014. "Truck parking in urban areas: Application of choice modelling within traffic microsimulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 54-64.
    18. Younesi, Abdollah & Shayeghi, Hossein & Safari, Amin & Siano, Pierluigi, 2020. "Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation," Energy, Elsevier, vol. 207(C).
    19. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    20. Christensen, Linda & Klauenberg, Jens & Kveiborg, Ole & Rudolph, Christian, 2017. "Suitability of commercial transport for a shift to electric mobility with Denmark and Germany as use cases," Research in Transportation Economics, Elsevier, vol. 64(C), pages 48-60.
    21. Barfod, Michael B. & Kaplan, Sigal & Frenzel, Ina & Klauenberg, Jens, 2016. "COPE-SMARTER – A decision support system for analysing the challenges, opportunities and policy initiatives: A case study of electric commercial vehicles market diffusion in Denmark," Research in Transportation Economics, Elsevier, vol. 55(C), pages 3-11.
    22. Li, Yaoming & Zhang, Qi & Liu, Boyu & McLellan, Benjamin & Gao, Yuan & Tang, Yanyan, 2018. "Substitution effect of New-Energy Vehicle Credit Program and Corporate Average Fuel Consumption Regulation for Green-car Subsidy," Energy, Elsevier, vol. 152(C), pages 223-236.
    23. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    24. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    25. Han, Xiaojuan & Liang, Yubo & Ai, Yaoyao & Li, Jianlin, 2018. "Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries," Energy, Elsevier, vol. 165(PA), pages 326-339.
    26. Cardoso, G. & Stadler, M. & Bozchalui, M.C. & Sharma, R. & Marnay, C. & Barbosa-Póvoa, A. & Ferrão, P., 2014. "Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules," Energy, Elsevier, vol. 64(C), pages 17-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Yanyan & Zhang, Qi & Liu, Boyu & Li, Yan & Ni, Ruiyan & Wang, Yi, 2023. "What influences residents’ intention to participate in the electric vehicle battery recycling? Evidence from China," Energy, Elsevier, vol. 276(C).
    2. Obrenović, Nikola & Ataç, Selin & Bierlaire, Michel, 2024. "Light electric vehicle sharing systems: Functional design of a comprehensive decision making solution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    2. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    4. Baumgarte, Felix & Kaiser, Matthias & Keller, Robert, 2021. "Policy support measures for widespread expansion of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 156(C).
    5. Lukas Lanz & Bessie Noll & Tobias S. Schmidt & Bjarne Steffen, 2022. "Comparing the levelized cost of electric vehicle charging options in Europe," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Zhang, Qi & Tang, Yanyan & Bunn, Derek & Li, Hailong & Li, Yaoming, 2021. "Comparative evaluation and policy analysis for recycling retired EV batteries with different collection modes," Applied Energy, Elsevier, vol. 303(C).
    7. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    8. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    9. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    10. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric & Van Woensel, Tom, 2020. "A Benders decomposition-based approach for logistics service network design," European Journal of Operational Research, Elsevier, vol. 286(2), pages 523-537.
    11. Daniel Baena & Jordi Castro & Antonio Frangioni, 2020. "Stabilized Benders Methods for Large-Scale Combinatorial Optimization, with Application to Data Privacy," Management Science, INFORMS, vol. 66(7), pages 3051-3068, July.
    12. Gruson, Matthieu & Cordeau, Jean-François & Jans, Raf, 2021. "Benders decomposition for a stochastic three-level lot sizing and replenishment problem with a distribution structure," European Journal of Operational Research, Elsevier, vol. 291(1), pages 206-217.
    13. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    14. Benedetto Aluisio & Maria Dicorato & Imma Ferrini & Giuseppe Forte & Roberto Sbrizzai & Michele Trovato, 2019. "Optimal Sizing Procedure for Electric Vehicle Supply Infrastructure Based on DC Microgrid with Station Commitment," Energies, MDPI, vol. 12(10), pages 1-19, May.
    15. René Brandenberg & Paul Stursberg, 2021. "Refined cut selection for benders decomposition: applied to network capacity expansion problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 383-412, December.
    16. Tang, Yanyan & Zhang, Qi & Liu, Boyu & Li, Yan & Ni, Ruiyan & Wang, Yi, 2023. "What influences residents’ intention to participate in the electric vehicle battery recycling? Evidence from China," Energy, Elsevier, vol. 276(C).
    17. George-Williams, H. & Wade, N. & Carpenter, R.N., 2022. "A probabilistic framework for the techno-economic assessment of smart energy hubs for electric vehicle charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    19. Michels, Adalberto Sato & Lopes, Thiago Cantos & Magatão, Leandro, 2020. "An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    20. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.