IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v196y2020ics0360544220301870.html
   My bibliography  Save this article

Optimization of the thermal environment of a small-scale data center in China

Author

Listed:
  • Meng, Xiongzhuang
  • Zhou, Junli
  • Zhang, Xuejiao
  • Luo, Zhiwen
  • Gong, Hui
  • Gan, Ting

Abstract

In data centers, a large number of IT sever racks with different heat dissipation rates are arranged in multiple rows, leading to much higher per-unit heat release and therefore more uneven temperature distribution than in general buildings. This paper chooses a small-scale data center located in China to analyze the thermal environment for the operation of these critical equipments. The wind speed and temperature in the data center were measured, and a corresponding computer room model was established via computational fluid dynamics (CFD) simulation software. Based on it, the characteristics of flow field and temperature field of the data center were analyzed. The optimization methods for problem of uneven temperature distribution and chaotic air supply in the data center were proposed and verified by evaluation index. Furthermore, the return temperature index(RHI) increased from 0.918 to 0.93, the return heat index(RTI) increased from 0.222 to 0.342.

Suggested Citation

  • Meng, Xiongzhuang & Zhou, Junli & Zhang, Xuejiao & Luo, Zhiwen & Gong, Hui & Gan, Ting, 2020. "Optimization of the thermal environment of a small-scale data center in China," Energy, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301870
    DOI: 10.1016/j.energy.2020.117080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
    2. Rong, Huigui & Zhang, Haomin & Xiao, Sheng & Li, Canbing & Hu, Chunhua, 2016. "Optimizing energy consumption for data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 674-691.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Tao & Chen, Xiaoxuan & Cao, Hanwen & He, Zhiguang & Wang, Jianmin & Li, Zhen, 2021. "Principles of loop thermosyphon and its application in data center cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    3. Ren, Shoujun & Yang, Haolin & Wang, Xiaohan, 2021. "The oxygen-deficient combustion and its effect on the NOx emission in a localized stratified vortex-tube combustor," Energy, Elsevier, vol. 235(C).
    4. Zhang, Qiaoxin & Tu, Rang & Yang, Xu, 2024. "Optimization operation of data Center's distributed air conditioning system based on supply-demand matching," Energy, Elsevier, vol. 306(C).
    5. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    6. Bie, Yiming & Liu, Yajun & Li, Shiwu & Wang, Linhong, 2022. "HVAC operation planning for electric bus trips based on chance-constrained programming," Energy, Elsevier, vol. 258(C).
    7. Li, Chao & Mao, Ruiyong & Wang, Yong & Zhang, Jun & Lan, Jiang & Zhang, Zujing, 2024. "Experimental study on direct evaporative cooling for free cooling of data centers," Energy, Elsevier, vol. 288(C).
    8. Sun, Xiaoqing & Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Zhang, Yiqi & Li, Mengyi & Li, Xiuming & Wang, Qinghai & Wen, Zhenwu & Zheng, Baoli, 2023. "Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers," Energy, Elsevier, vol. 274(C).
    9. Du, Yahui & Zhou, Zhihua & Yang, Xiaochen & Yang, Xueqing & Wang, Cheng & Liu, Junwei & Yuan, Jianjuan, 2023. "Dynamic thermal environment management technologies for data center: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Salvo, André L.A. & Agostinho, Feni & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2017. "Can cloud computing be labeled as “green”? Insights under an environmental accounting perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 514-526.
    2. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    3. Hyvönen, Johannes & Mori, Taro & Saunavaara, Juha & Hiltunen, Pauli & Pärssinen, Matti & Syri, Sanna, 2024. "Potential of solar photovoltaics and waste heat utilization in cold climate data centers. Case study: Finland and northern Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    4. Moazamigoodarzi, Hosein & Tsai, Peiying Jennifer & Pal, Souvik & Ghosh, Suvojit & Puri, Ishwar K., 2019. "Influence of cooling architecture on data center power consumption," Energy, Elsevier, vol. 183(C), pages 525-535.
    5. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    6. Leyla Amiri & Edris Madadian & Navid Bahrani & Seyed Ali Ghoreishi-Madiseh, 2021. "Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems," Energies, MDPI, vol. 14(9), pages 1-11, April.
    7. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    8. Yu, Jiawen & Jiang, Yiqiang & Yan, Yanqiu, 2019. "A simulation study on heat recovery of data center: A case study in Harbin, China," Renewable Energy, Elsevier, vol. 130(C), pages 154-173.
    9. Zhen Yang & Jinhong Du & Yiting Lin & Zhen Du & Li Xia & Qianchuan Zhao & Xiaohong Guan, 2022. "Increasing the energy efficiency of a data center based on machine learning," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 323-335, February.
    10. Matteo Manganelli & Alessandro Soldati & Luigi Martirano & Seeram Ramakrishna, 2021. "Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    11. Lan, Yun Cheng & Li, Cheng & Wang, Sui Lin, 2019. "Parabolic antenna snow melting and removal using waste heat from the transmitter room," Energy, Elsevier, vol. 181(C), pages 738-744.
    12. Bao, Yuchen & Zhou, Haojie & Li, Ji, 2024. "Physics-based machine learning optimization of thermoelectric assembly for maximizing waste heat recovery," Energy, Elsevier, vol. 307(C).
    13. Utlu, Zafer, 2015. "Investigation of the potential for heat recovery at low, medium, and high stages in the Turkish industrial sector (TIS): An application," Energy, Elsevier, vol. 81(C), pages 394-405.
    14. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
    15. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    16. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    17. Ljungqvist, Hampus Markeby & Mattsson, Louise & Risberg, Mikael & Vesterlund, Mattias, 2021. "Data center heated greenhouses, a matter for enhanced food self-sufficiency in sub-arctic regions," Energy, Elsevier, vol. 215(PB).
    18. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
    19. Yin Bi & Yugang Wang & Xiaoli Ma & Xudong Zhao, 2017. "Investigation on the Energy Saving Potential of Using a Novel Dew Point Cooling System in Data Centres," Energies, MDPI, vol. 10(11), pages 1-21, October.
    20. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.