IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v204y2024ics1364032124005197.html
   My bibliography  Save this article

Application of robust optimized spatiotemporal load management of data centers for renewable curtailment mitigation

Author

Listed:
  • Zare Ghaleh Seyyedi, Abbas
  • Akbari, Ehsan
  • Mahmoudi Rashid, Sara
  • Nejati, Seyed Ashkan
  • Gitizadeh, Mohsen

Abstract

Renewable energy sources play a crucial role in the provision of power supply in active distribution networks. In networks that rely on renewable energy sources, it may become imperative to curtail the power generated by such units due to a variety of factors. The curtailment of renewable energy generation can be attributed to various factors such as overgeneration, voltage limitations at the network bus, and power limitations at the network line. As per the specified parameters, it is possible for the power generation of renewable units to exceed the load consumption at certain intervals throughout the operational duration. Hence, it is essential to devise a solution that mitigates the frequency and duration of power generation curtailments of renewable units. It is feasible to redistribute overgeneration of renewable energy sources from periods of excess to periods of insufficient capacity to meet demand. This study demonstrates that the provision of power to loads from the sub-distribution substation experiences a reduction in power supply and cost. It is feasible to transmit surplus power from a single bus to multiple other buses. The term used to refer to the ability to transfer power across different locations and time periods is known as spatiotemporal flexibility. The presence of data centers in distribution networks enables a reduction in costs and the frequency of power interruptions associated with renewable energy sources, through the utilization of spatiotemporal flexibility. The objective of this paper is to present a methodology for achieving temporal and spatial flexibility in data centers, with the aim of minimizing costs and curtailing the output generation of renewable energy units. Undoubtedly, this approach can also be executed by incorporating mobile batteries; however, it is noteworthy that mobile batteries entail additional costs on the network. Consequently, the implementation of the spatiotemporal flexibility approach in data centers has been adopted as a substitute for the utilization of mobile batteries. This approach, also referred to as virtual battery, effectively eliminates the costs associated with the use of mobile batteries. This study examines overgeneration of renewable units, bus voltage limitations, and line power restrictions on the standard IEEE 33-bus network. Three scenarios are considered, each involving changes in data center power in response to varying load profiles. The implementation of equitable power distribution across data centers, both in terms of temporal and spatial dimensions, as well as the adoption of flexible spatiotemporal flexibility scenario for data centers, have been observed. The findings of this study indicate that the approach employed in this paper leads to a decrease in costs and the output power of renewable units in the examined scenarios. The implementation of spatiotemporal flexibility mode has resulted in a reduction of power supply expenses ranging from 12 to 37 percent when compared to the basic case. Ultimately, the sensitivity analysis pertaining to the placement of data centers and the associated uncertainty index is presented.

Suggested Citation

  • Zare Ghaleh Seyyedi, Abbas & Akbari, Ehsan & Mahmoudi Rashid, Sara & Nejati, Seyed Ashkan & Gitizadeh, Mohsen, 2024. "Application of robust optimized spatiotemporal load management of data centers for renewable curtailment mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:rensus:v:204:y:2024:i:c:s1364032124005197
    DOI: 10.1016/j.rser.2024.114793
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124005197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lian, Yicheng & Li, Yuanzheng & Zhao, Yong & Yu, Chaofan & Zhao, Tianyang & Wu, Lei, 2023. "Robust multi-objective optimization for islanded data center microgrid operations," Applied Energy, Elsevier, vol. 330(PB).
    2. Hirotaka Takano & Ryota Goto & Ryosuke Hayashi & Hiroshi Asano, 2021. "Optimization Method for Operation Schedule of Microgrids Considering Uncertainty in Available Data," Energies, MDPI, vol. 14(9), pages 1-13, April.
    3. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    4. Jin, Chaoqiang & Bai, Xuelian & Yang, Chao & Mao, Wangxin & Xu, Xin, 2020. "A review of power consumption models of servers in data centers," Applied Energy, Elsevier, vol. 265(C).
    5. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    6. Kwon, Soongeol, 2020. "Ensuring renewable energy utilization with quality of service guarantee for energy-efficient data center operations," Applied Energy, Elsevier, vol. 276(C).
    7. Park, Sung-Won & Cho, Kyu-Sang & Hoefter, Gregor & Son, Sung-Yong, 2022. "Electric vehicle charging management using location-based incentives for reducing renewable energy curtailment considering the distribution system," Applied Energy, Elsevier, vol. 305(C).
    8. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    9. Roberto Felipe Andrade Menezes & Guilherme Delgado Soriano & Ronaldo Ribeiro Barbosa de Aquino, 2021. "Locational Marginal Pricing and Daily Operation Scheduling of a Hydro-Thermal-Wind-Photovoltaic Power System Using BESS to Reduce Wind Power Curtailment," Energies, MDPI, vol. 14(5), pages 1-22, March.
    10. Rong, Huigui & Zhang, Haomin & Xiao, Sheng & Li, Canbing & Hu, Chunhua, 2016. "Optimizing energy consumption for data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 674-691.
    11. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Robert Basmadjian, 2019. "Flexibility-Based Energy and Demand Management in Data Centers: A Case Study for Cloud Computing," Energies, MDPI, vol. 12(17), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wenyu & Yan, Yuejun & Sun, Yimeng & Mao, Hongju & Cheng, Ming & Wang, Peng & Ding, Zhaohao, 2023. "Online job scheduling scheme for low-carbon data center operation: An information and energy nexus perspective," Applied Energy, Elsevier, vol. 338(C).
    2. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    3. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Zou, Zhice & Shen, Boyang & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu, 2022. "Energy-saving superconducting power delivery from renewable energy source to a 100-MW-class data center," Applied Energy, Elsevier, vol. 310(C).
    4. Wang, Kaifeng & Ye, Lin & Yang, Shihui & Deng, Zhanfeng & Song, Jieying & Li, Zhuo & Zhao, Yongning, 2023. "A hierarchical dispatch strategy of hybrid energy storage system in internet data center with model predictive control," Applied Energy, Elsevier, vol. 331(C).
    5. Xiao, Jiang-Wen & Yang, Yan-Bing & Cui, Shichang & Wang, Yan-Wu, 2023. "Cooperative online schedule of interconnected data center microgrids with shared energy storage," Energy, Elsevier, vol. 285(C).
    6. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    7. Liu, Xiaoou, 2024. "Research on collaborative scheduling of internet data center and regional integrated energy system based on electricity-heat-water coupling," Energy, Elsevier, vol. 292(C).
    8. Yuyang Zhao & Yifan Wei & Shuaiqi Zhang & Yingjun Guo & Hexu Sun, 2024. "Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage," Energies, MDPI, vol. 17(5), pages 1-20, February.
    9. Matteo Manganelli & Alessandro Soldati & Luigi Martirano & Seeram Ramakrishna, 2021. "Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    10. Wu, Qunli & Li, Chunxiang, 2023. "Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading," Energy, Elsevier, vol. 270(C).
    11. Lei Su & Wenxiang Wu & Wanli Feng & Junda Qin & Yuqi Ao, 2024. "Collaborative Planning of Distribution Network, Data Centres and Renewable Energy in the Power Distribution IoT via Interval Optimization," Energies, MDPI, vol. 17(15), pages 1-26, July.
    12. Tudor Cioara & Marcel Antal & Claudia Daniela Antal (Pop) & Ionut Anghel & Massimo Bertoncini & Diego Arnone & Marilena Lazzaro & Marzia Mammina & Terpsichori-Helen Velivassaki & Artemis Voulkidis & Y, 2020. "Data Centers Optimized Integration with Multi-Energy Grids: Test Cases and Results in Operational Environment," Sustainability, MDPI, vol. 12(23), pages 1-23, November.
    13. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    14. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    15. Wang, Fengjuan & Lv, Chengwei & Xu, Jiuping, 2023. "Carbon awareness oriented data center location and configuration: An integrated optimization method," Energy, Elsevier, vol. 278(C).
    16. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    17. Di Salvo, André L.A. & Agostinho, Feni & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2017. "Can cloud computing be labeled as “green”? Insights under an environmental accounting perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 514-526.
    18. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    19. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
    20. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:204:y:2024:i:c:s1364032124005197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.