IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221016133.html
   My bibliography  Save this article

The oxygen-deficient combustion and its effect on the NOx emission in a localized stratified vortex-tube combustor

Author

Listed:
  • Ren, Shoujun
  • Yang, Haolin
  • Wang, Xiaohan

Abstract

The oxygen-deficient combustion characteristics of methane in a localized stratified vortex-tube combustor (LSVC) are studied by diluting combustion air with nitrogen. The influences of oxygen mole fraction (0.13–0.21) on flame configuration, combustion stability, combustion efficiency, and NOx emission characteristics are experimental investigated at the inlet temperature of 300 K. Combined with the numerical simulation method, the NOx generation, and emission mechanisms are analyzed in this combustor. Results show that the LSVC can achieve a wide stability limit, in which the global equivalence ratio can be as low as 0.22 at the lowest oxygen mole fraction (β) of 0.13. To ensure high combustion efficiency, the β should be kept above 0.16 since the oxygen-deficient condition reduces the reaction rate and flame temperature. The combustor can achieve ultra-low NOx emission of below 10 ppm (@ 15 vol% O2) due to low oxygen concentration and flame temperature. Furthermore, part of NOx entrained into the fuel-rich reduction zone by the swirl flow field is reduced by the reductive species (i.e., CO and H2) to further lowering NOx emissions. The results of this paper can guide the development of the LSVC in the high-efficiency and low-emission combustion fields.

Suggested Citation

  • Ren, Shoujun & Yang, Haolin & Wang, Xiaohan, 2021. "The oxygen-deficient combustion and its effect on the NOx emission in a localized stratified vortex-tube combustor," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016133
    DOI: 10.1016/j.energy.2021.121365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Qibo & Tan, Qingmei, 2021. "National environmental audit and improvement of regional energy efficiency from the perspective of institution and development differences," Energy, Elsevier, vol. 217(C).
    2. Ren, Shoujun & Yang, Haolin & Jiang, Liqiao & Zhao, Daiqing & Wang, Xiaohan, 2020. "Stabilization characteristics and mechanisms in a novel tubular flame burner with localized stratified property," Energy, Elsevier, vol. 197(C).
    3. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    4. Yang, Weihong & Blasiak, Wlodzimierz, 2005. "Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air," Energy, Elsevier, vol. 30(2), pages 385-398.
    5. Khanali, Majid & Akram, Asadollah & Behzadi, Javad & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2021. "Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm," Applied Energy, Elsevier, vol. 284(C).
    6. Neves, Joana & Oliveira, Tiago, 2021. "Understanding energy-efficient heating appliance behavior change: The moderating impact of the green self-identity," Energy, Elsevier, vol. 225(C).
    7. Tu, Yaojie & Zhou, Anqi & Xu, Mingchen & Yang, Wenming & Siah, Keng Boon & Subbaiah, Prabakaran, 2018. "NOX reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology," Applied Energy, Elsevier, vol. 220(C), pages 962-973.
    8. Meng, Xiongzhuang & Zhou, Junli & Zhang, Xuejiao & Luo, Zhiwen & Gong, Hui & Gan, Ting, 2020. "Optimization of the thermal environment of a small-scale data center in China," Energy, Elsevier, vol. 196(C).
    9. Wang, G. & Si, J. & Xu, M. & Mi, J., 2019. "MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow," Energy, Elsevier, vol. 187(C).
    10. Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Shoujun & Jones, William P. & Wang, Xiaohan, 2023. "Multi-fuel combustion performance analysis and operating characteristics of a vortex-tube combustor," Energy, Elsevier, vol. 264(C).
    2. Xiao, Guolin & Gao, Xiaori & Lu, Wei & Liu, Xiaodong & Asghar, Aamer Bilal & Jiang, Liu & Jing, Wenlin, 2023. "A physically based air proportioning methodology for optimized combustion in gas-fired boilers considering both heat release and NOx emissions," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    2. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    3. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    4. Pantua, Conrad Allan Jay & Calautit, John Kaiser & Wu, Yupeng, 2021. "Sustainability and structural resilience of building integrated photovoltaics subjected to typhoon strength winds," Applied Energy, Elsevier, vol. 301(C).
    5. Byeong-Cheol Kang, & Choi, Hyeong-Jun & Park, Sang-Joon & Ha, Tae-Jun, 2021. "Wearable triboelectric nanogenerators with the reduced loss of triboelectric charges by using a hole transport layer of bar-printed single-wall carbon nanotube random networks," Energy, Elsevier, vol. 233(C).
    6. Xu, Liang & Liu, Yangyang & Bai, Wenshuai & Tan, Zhaoyang & Xue, Wei, 2022. "Design and control of energy-saving double side-stream extractive distillation for the benzene/isopropanol/water separation," Energy, Elsevier, vol. 239(PA).
    7. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S. & Sharma, Sandeep, 2021. "Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India," Energy, Elsevier, vol. 230(C).
    8. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Cao, Junyi & Liao, Wei-Hsin, 2022. "Design of a high-performance piecewise bi-stable piezoelectric energy harvester," Energy, Elsevier, vol. 241(C).
    9. Zhang, Qunli & Niu, Yu & Yang, Xiaohu & Sun, Donghan & Xiao, Xin & Shen, Qi & Wang, Gang, 2020. "Experimental study of flue gas condensing heat recovery synergized with low NOx emission system," Applied Energy, Elsevier, vol. 269(C).
    10. Li, Mengjie & Du, Weijian, 2021. "Can Internet development improve the energy efficiency of firms: Empirical evidence from China," Energy, Elsevier, vol. 237(C).
    11. Vo Thanh, Hung & Lee, Kang-Kun, 2022. "Application of machine learning to predict CO2 trapping performance in deep saline aquifers," Energy, Elsevier, vol. 239(PE).
    12. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).
    13. Zhang, Liufeng & Zhang, Feibin & Qin, Zhaoye & Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring," Energy, Elsevier, vol. 238(PB).
    14. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    15. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    16. Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
    17. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
    18. He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.
    19. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    20. Ren, Shoujun & Jones, William P. & Wang, Xiaohan, 2023. "Multi-fuel combustion performance analysis and operating characteristics of a vortex-tube combustor," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.