IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v190y2020ics0360544219321437.html
   My bibliography  Save this article

Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings

Author

Listed:
  • Bienvenido-Huertas, David
  • Sánchez-García, Daniel
  • Rubio-Bellido, Carlos

Abstract

There is currently a need to restore the existing building stock. For this purpose, an energy evaluation of the building is conducted before deciding which intervention should be made. In that intervention, setpoint temperatures based on the index Predicted Mean Vote (PMV) are considered. This research studies the energy and economic feasibility of carrying out different energy conservation measures (ECMs) of façades by applying adaptive setpoint temperatures. The energy saving was also studied for future scenarios of climate change (2050 and 2080). The case study was a building with a deficient energy behaviour and located in the Mediterranean climate region. Both ECMs of façades and the cost payback period were studied. The results showed that the façade improvement was not an effective measure in the Mediterranean climate: saving percentages were not high in cooling consumption, and the amortization period was economically unfeasible. On the other hand, the use of adaptive setpoint temperatures was the most efficient measure, achieving savings higher than 70% in cooling consumption. Finally, there were limitations in the use of the adaptive comfort model from EN 15251 in future scenarios.

Suggested Citation

  • Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321437
    DOI: 10.1016/j.energy.2019.116448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219321437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kramer, R.P. & Maas, M.P.E. & Martens, M.H.J. & van Schijndel, A.W.M. & Schellen, H.L., 2015. "Energy conservation in museums using different setpoint strategies: A case study for a state-of-the-art museum using building simulations," Applied Energy, Elsevier, vol. 158(C), pages 446-458.
    2. Bottino-Leone, Dario & Larcher, Marco & Herrera-Avellanosa, Daniel & Haas, Franziska & Troi, Alexandra, 2019. "Evaluation of natural-based internal insulation systems in historic buildings through a holistic approach," Energy, Elsevier, vol. 181(C), pages 521-531.
    3. Nafisa Bhikhoo & Arman Hashemi & Heather Cruickshank, 2017. "Improving Thermal Comfort of Low-Income Housing in Thailand through Passive Design Strategies," Sustainability, MDPI, vol. 9(8), pages 1-23, August.
    4. Kwon Sook Park & Mi Jeong Kim, 2017. "Energy Demand Reduction in the Residential Building Sector: A Case Study of Korea," Energies, MDPI, vol. 10(10), pages 1-11, September.
    5. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    6. David Bienvenido-Huertas & Juan Antonio Fernández Quiñones & Juan Moyano & Carlos E. Rodríguez-Jiménez, 2018. "Patents Analysis of Thermal Bridges in Slab Fronts and Their Effect on Energy Demand," Energies, MDPI, vol. 11(9), pages 1-18, August.
    7. Víctor Echarri-Iribarren & Cristina Sotos-Solano & Almudena Espinosa-Fernández & Raúl Prado-Govea, 2019. "The Passivhaus Standard in the Spanish Mediterranean: Evaluation of a House’s Thermal Behaviour of Enclosures and Airtightness," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    8. David Bienvenido-Huertas & Carlos Rubio-Bellido & Juan Luis Pérez-Ordóñez & Fernando Martínez-Abella, 2019. "Estimating Adaptive Setpoint Temperatures Using Weather Stations," Energies, MDPI, vol. 12(7), pages 1-47, March.
    9. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    10. Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "Assessment of climate change impact on building energy use and mitigation measures in subtropical climates," Energy, Elsevier, vol. 36(3), pages 1404-1414.
    11. Yang, Zheng & Becerik-Gerber, Burcin, 2015. "A model calibration framework for simultaneous multi-level building energy simulation," Applied Energy, Elsevier, vol. 149(C), pages 415-431.
    12. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    13. Mustafaraj, Giorgio & Marini, Dashamir & Costa, Andrea & Keane, Marcus, 2014. "Model calibration for building energy efficiency simulation," Applied Energy, Elsevier, vol. 130(C), pages 72-85.
    14. Alexis Pérez-Fargallo & Carlos Rubio-Bellido & Jesús A. Pulido-Arcas & Inmaculada Gallego-Maya & Fco. Javier Guevara-García, 2018. "Influence of Adaptive Comfort Models on Energy Improvement for Housing in Cold Areas," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    15. Rubio-Bellido, Carlos & Pérez-Fargallo, Alexis & Pulido-Arcas, Jesús A., 2016. "Optimization of annual energy demand in office buildings under the influence of climate change in Chile," Energy, Elsevier, vol. 114(C), pages 569-585.
    16. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    17. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    18. Friedman, Chanoch & Becker, Nir & Erell, Evyatar, 2014. "Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis," Energy, Elsevier, vol. 77(C), pages 183-193.
    19. Víctor Echarri-Iribarren & Carlos Rizo-Maestre & Fernando Echarri-Iribarren, 2018. "Healthy Climate and Energy Savings: Using Thermal Ceramic Panels and Solar Thermal Panels in Mediterranean Housing Blocks," Energies, MDPI, vol. 11(10), pages 1-32, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Analysing natural ventilation to reduce the cooling energy consumption and the fuel poverty of social dwellings in coastal zones," Applied Energy, Elsevier, vol. 279(C).
    2. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
    3. David Bienvenido-Huertas, 2020. "Analysis of the Relationship of the Improvement of Façades and Thermal Bridges of Spanish Building Stock with the Mitigation of Its Energy and Environmental Impact," Energies, MDPI, vol. 13(17), pages 1-20, September.
    4. Mª Desirée Alba-Rodríguez & Carlos Rubio-Bellido & Mónica Tristancho-Carvajal & Raúl Castaño-Rosa & Madelyn Marrero, 2021. "Present and Future Energy Poverty, a Holistic Approach: A Case Study in Seville, Spain," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    5. López-Pérez, Luis Adrián & Flores-Prieto, José Jassón, 2023. "Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence," Energy, Elsevier, vol. 263(PA).
    6. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    7. Buyak, Nadia & Deshko, Valeriy & Bilous, Inna & Pavlenko, Anatoliy & Sapunov, Anatoliy & Biriukov, Dmytro, 2023. "Dynamic interdependence of comfortable thermal conditions and energy efficiency increase in a nursery school building for heating and cooling period," Energy, Elsevier, vol. 283(C).
    8. David Bienvenido-Huertas, 2020. "Analysis of the Impact of the Use Profile of HVAC Systems Established by the Spanish Standard to Assess Residential Building Energy Performance," Sustainability, MDPI, vol. 12(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Sánchez-García & David Bienvenido-Huertas & Mónica Tristancho-Carvajal & Carlos Rubio-Bellido, 2019. "Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings under Current and Future Climate Conditions: A Case Study Located in Spain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    2. David Bienvenido-Huertas, 2020. "Analysis of the Impact of the Use Profile of HVAC Systems Established by the Spanish Standard to Assess Residential Building Energy Performance," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    3. David Bienvenido-Huertas & Juan Antonio Fernández Quiñones & Juan Moyano & Carlos E. Rodríguez-Jiménez, 2018. "Patents Analysis of Thermal Bridges in Slab Fronts and Their Effect on Energy Demand," Energies, MDPI, vol. 11(9), pages 1-18, August.
    4. Lucía Pereira-Ruchansky & Alexis Pérez-Fargallo, 2020. "Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    5. David Bienvenido-Huertas & Miguel Oliveira & Carlos Rubio-Bellido & David Marín, 2019. "A Comparative Analysis of the International Regulation of Thermal Properties in Building Envelope," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    6. Marta Videras Rodríguez & Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2020. "Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies," Energies, MDPI, vol. 13(23), pages 1-22, November.
    7. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    8. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    9. Larrea-Sáez, Lorena & Muñoz, Enrique & Cuevas, Cristian & Casas-Ledón, Yannay, 2024. "Optimizing insulation and heating systems for social housing in Chile: Insights for sustainable energy policies," Energy, Elsevier, vol. 290(C).
    10. Pérez-Fargallo, Alexis & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A. & Javier Guevara-García, Fco., 2018. "Fuel Poverty Potential Risk Index in the context of climate change in Chile," Energy Policy, Elsevier, vol. 113(C), pages 157-170.
    11. Cristina Baglivo, 2021. "Dynamic Evaluation of the Effects of Climate Change on the Energy Renovation of a School in a Mediterranean Climate," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    12. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    13. Battista, Gabriele & de Lieto Vollaro, Emanuele & Ocłoń, Paweł & Vallati, Andrea, 2021. "Effect of mutual radiative exchange between the surfaces of a street canyon on the building thermal energy demand," Energy, Elsevier, vol. 226(C).
    14. Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
    15. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    17. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2017. "Energy use implications of different design strategies for multi-storey residential buildings under future climates," Energy, Elsevier, vol. 138(C), pages 846-860.
    18. Li, Nan & Yang, Zheng & Becerik-Gerber, Burcin & Tang, Chao & Chen, Nanlin, 2015. "Why is the reliability of building simulation limited as a tool for evaluating energy conservation measures?," Applied Energy, Elsevier, vol. 159(C), pages 196-205.
    19. Si Chen & Daniel Friedrich & Zhibin Yu & James Yu, 2019. "District Heating Network Demand Prediction Using a Physics-Based Energy Model with a Bayesian Approach for Parameter Calibration," Energies, MDPI, vol. 12(18), pages 1-19, September.
    20. Ramos Ruiz, Germán & Fernández Bandera, Carlos, 2017. "Analysis of uncertainty indices used for building envelope calibration," Applied Energy, Elsevier, vol. 185(P1), pages 82-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.