IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p859-d136860.html
   My bibliography  Save this article

Influence of Adaptive Comfort Models on Energy Improvement for Housing in Cold Areas

Author

Listed:
  • Alexis Pérez-Fargallo

    (Department of Building Science, University of Bio-Bio, Concepción 4030000, Chile)

  • Carlos Rubio-Bellido

    (Department of Building Construction II, University of Seville, Seville 41012, Spain)

  • Jesús A. Pulido-Arcas

    (Department of Building Science, University of Bio-Bio, Concepción 4030000, Chile)

  • Inmaculada Gallego-Maya

    (Department of Building Construction II, University of Seville, Seville 41012, Spain)

  • Fco. Javier Guevara-García

    (Department of Building Construction II, University of Seville, Seville 41012, Spain)

Abstract

The evaluation of construction standards using adaptive thermal comfort models has a great impact on energy consumption. The analysis of a user’s climate adaptation must be one of the first steps in the search for nearly/net Zero Energy Buildings (nZEB). The goal of this work is to analyze the standards recommended by the Chile’s Construction with Sustainability Criteria for the building of housing, applying the ASHRAE 55-2017 and EN 15251:2007 adaptive comfort models in social housing. The study produces concrete recommendations associated with construction strategies, to increase the number of hours the user finds themselves with acceptable thermal comfort levels, without repercussions for energy consumption. Sixteen parametric series were evaluated with a dynamic simulation of the most common prototype of social housing in the Bio-Bio Region. The study shows that thermal comfort conditions can be increased through a combination of improvement measures compared to the ECCS standard (Construction Standards with Sustainability Criteria): 27.52% in the case of applying EN 15251:2007 and 24.04% in the case of ASHRAE 55-2017.

Suggested Citation

  • Alexis Pérez-Fargallo & Carlos Rubio-Bellido & Jesús A. Pulido-Arcas & Inmaculada Gallego-Maya & Fco. Javier Guevara-García, 2018. "Influence of Adaptive Comfort Models on Energy Improvement for Housing in Cold Areas," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:859-:d:136860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chiara Burattini & Fabio Nardecchia & Fabio Bisegna & Lucia Cellucci & Franco Gugliermetti & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "Methodological Approach to the Energy Analysis of Unconstrained Historical Buildings," Sustainability, MDPI, vol. 7(8), pages 1-17, August.
    2. Thomson, Harriet & Snell, Carolyn, 2013. "Quantifying the prevalence of fuel poverty across the European Union," Energy Policy, Elsevier, vol. 52(C), pages 563-572.
    3. Peacock, A.D. & Jenkins, D.P. & Kane, D., 2010. "Investigating the potential of overheating in UK dwellings as a consequence of extant climate change," Energy Policy, Elsevier, vol. 38(7), pages 3277-3288, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).
    2. Domenico Mazzeo & Giuseppe Oliveti, 2020. "Advanced Innovative Solutions for Final Design in Terms of Energy Sustainability of Nearly/Net Zero Energy Buildings (nZEB)," Sustainability, MDPI, vol. 12(24), pages 1-5, December.
    3. Lucía Pereira-Ruchansky & Alexis Pérez-Fargallo, 2020. "Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    4. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    5. Hugo Valdés & Christian Correa & Felipe Mellado, 2018. "Proposed Model of Sustainable Construction Skills for Engineers in Chile," Sustainability, MDPI, vol. 10(9), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucía Pereira-Ruchansky & Alexis Pérez-Fargallo, 2020. "Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    2. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    3. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    4. Rodriguez-Alvarez, Ana & Llorca, Manuel & Jamasb, Tooraj, 2021. "Alleviating energy poverty in Europe: Front-runners and laggards," Energy Economics, Elsevier, vol. 103(C).
    5. Aristondo, Oihana & Onaindia, Eneritz, 2018. "Inequality of energy poverty between groups in Spain," Energy, Elsevier, vol. 153(C), pages 431-442.
    6. Piotr Gradziuk & Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Anna Trocewicz & Iryna Skorokhod, 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas," Energies, MDPI, vol. 15(21), pages 1-16, October.
    7. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    8. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    9. Corina MURAFA, 2022. "Energy poverty and the vulnerable energy consumer in Romania: A curious case of policy schizophrenia," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(633), W), pages 57-68, Winter.
    10. Charlier, Dorothée & Legendre, Bérangère, 2021. "Fuel poverty in industrialized countries: Definition, measures and policy implications a review," Energy, Elsevier, vol. 236(C).
    11. Curtis, John & Pentecost, Anne, 2015. "Household fuel expenditure and residential building energy efficiency ratings in Ireland," Energy Policy, Elsevier, vol. 76(C), pages 57-65.
    12. Mara Hammerle & Paul J. Burke, 2022. "Solar PV and energy poverty in Australia's residential sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 822-841, October.
    13. Fateh Belaid, 2020. "Fuel Poverty Exposure and Drivers: A Comparison of Vulnerability Landscape between Egypt and Jordan," Working Papers 1392, Economic Research Forum, revised 20 Apr 2020.
    14. Belaïd, Fateh, 2022. "Mapping and understanding the drivers of fuel poverty in emerging economies: The case of Egypt and Jordan," Energy Policy, Elsevier, vol. 162(C).
    15. Paloma Taltavull de la Paz & Francisco Juárez & Paloma Monllor, 2016. "Fuel Poverty: Evidence from housing perspective," Working Papers 2016/20, Institut d'Economia de Barcelona (IEB).
    16. Ben Cheikh, Nidhaleddine & Ben Zaied, Younes & Nguyen, Duc Khuong, 2023. "Understanding energy poverty drivers in Europe," Energy Policy, Elsevier, vol. 183(C).
    17. Halkos, George E. & Aslanidis, Panagiotis – Stavros C., 2023. "Sustainable energy development in an era of geopolitical multi-crisis. Applying productivity indices within institutional framework," Resources Policy, Elsevier, vol. 85(PB).
    18. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    19. Fry, Jane M. & Farrell, Lisa & Temple, Jeromey B., 2022. "Energy poverty and retirement income sources in Australia," Energy Economics, Elsevier, vol. 106(C).
    20. Simone Pront-van Bommel, 2016. "A Reasonable Price for Electricity," Journal of Consumer Policy, Springer, vol. 39(2), pages 141-158, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:859-:d:136860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.