IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v171y2019icp170-179.html
   My bibliography  Save this article

A practical research on capillaries used as a front-end heat exchanger of seawater-source heat pump

Author

Listed:
  • Liu, Long
  • Wang, Mingqing
  • Chen, Yu

Abstract

Traditional seawater-source heat pump (SWHP) needs to set water intake and titanium plate heat exchanger which result in high initial investment and large work quantity. A new type of SWHP was recommended, which use capillaries made by PPR (polypropylene random) submerged in seawater as the front-end heat exchanger. Glycol antifreeze solution was injected into the capillaries used as circulating medium. Capillaries were used as heat exchanger between seawater outside and glycol antifreeze solution inside. This method can greatly reduce the initial investment and improve COP of the SWHP system. This paper discusses the feasibility of capillaries used as the front-end heat exchanger of SWHP. An experimental platform was designed and constructed to measure the heat transfer coefficient of capillaries, and collect the operating data to calculate COP of SWHP in winter and summer. The experiment results show that, the average COP of the SWHP system is 3.17 in winter and 3.3 in summer. When the velocity of glycol in capillary tube is 0.15 m/s, the measured value of capillary heat transfer coefficient k is 161.01 W/(m2·°C). The efficiency of capillary heat exchanger was greater than 96.4%, which shows that it is feasible to use capillaries as the front-end heat exchanger of SWHP.

Suggested Citation

  • Liu, Long & Wang, Mingqing & Chen, Yu, 2019. "A practical research on capillaries used as a front-end heat exchanger of seawater-source heat pump," Energy, Elsevier, vol. 171(C), pages 170-179.
  • Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:170-179
    DOI: 10.1016/j.energy.2019.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219300143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Dong & Wang, Yun & Wang, Hanqing & Mo, Shunquan & Liao, Maili, 2016. "Numerical analysis of temperature non-uniformity and cooling capacity for capillary ceiling radiant cooling panel," Renewable Energy, Elsevier, vol. 87(P3), pages 1154-1161.
    2. Yu, Jie & Zhang, Huan & You, Shijun, 2012. "Heat transfer analysis and experimental verification of casted heat exchanger in non-icing and icing conditions in winter," Renewable Energy, Elsevier, vol. 41(C), pages 39-43.
    3. Ahmad, Tanveer & Chen, Huanxin & Shair, Jan, 2018. "Water source heat pump energy demand prognosticate using disparate data-mining based approaches," Energy, Elsevier, vol. 152(C), pages 788-803.
    4. De Pasquale, A.M. & Giostri, A. & Romano, M.C. & Chiesa, P. & Demeco, T. & Tani, S., 2017. "District heating by drinking water heat pump: Modelling and energy analysis of a case study in the city of Milan," Energy, Elsevier, vol. 118(C), pages 246-263.
    5. Niu, Fuxin & Yu, Yuebin, 2016. "Location and optimization analysis of capillary tube network embedded in active tuning building wall," Energy, Elsevier, vol. 97(C), pages 36-45.
    6. Lee, Hoseong & Saleh, Khaled & Hwang, Yunho & Radermacher, Reinhard, 2012. "Optimization of novel heat exchanger design for the application to low temperature lift heat pump," Energy, Elsevier, vol. 42(1), pages 204-212.
    7. Boubaker, Riadh & Platel, Vincent, 2016. "Dynamic model of capillary pumped loop with unsaturated porous wick for terrestrial application," Energy, Elsevier, vol. 111(C), pages 402-413.
    8. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Wang & Fenghui Han & Yulong Ji & Wenhua Li, 2020. "Performance and Exergy Transfer Analysis of Heat Exchangers with Graphene Nanofluids in Seawater Source Marine Heat Pump System," Energies, MDPI, vol. 13(7), pages 1-17, April.
    2. Zheng, Wandong & Yin, Hao & Li, Bojia & Zhang, Huan & Jurasz, Jakub & Zhong, Lei, 2022. "Heating performance and spatial analysis of seawater-source heat pump with staggered tube-bundle heat exchanger," Applied Energy, Elsevier, vol. 305(C).
    3. Wu, Zhenjing & You, Shijun & Zhang, Huan & Zheng, Wandong, 2020. "Model development and performance investigation of staggered tube-bundle heat exchanger for seawater source heat pump," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hypolite, Gautier & Boutin, Olivier & Sole, Sandrine Del & Cloarec, Jean-François & Ferrasse, Jean-Henry, 2023. "Evaluation of a water network’s energy potential in dynamic operation," Energy, Elsevier, vol. 271(C).
    2. Hamid, Mohammed O.A. & Zhang, Bo & Yang, Luopeng, 2014. "Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater," Energy, Elsevier, vol. 76(C), pages 241-253.
    3. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    4. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.
    5. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    6. Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.
    7. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    8. Lu, Yanyu & Dong, Jiankai & Liu, Jing, 2020. "Zonal modelling for thermal and energy performance of large space buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Han, Yongming & Wu, Hao & Geng, Zhiqiang & Zhu, Qunxiong & Gu, Xiangbai & Yu, Bin, 2020. "Review: Energy efficiency evaluation of complex petrochemical industries," Energy, Elsevier, vol. 203(C).
    10. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    11. Alexander Genbach & Hristo Beloev & David Bondartsev, 2021. "Comparison of Cooling Systems in Power Plant Units," Energies, MDPI, vol. 14(19), pages 1-14, October.
    12. Yihang Zhao & Mingshan Wei & Dan Dan, 2024. "Modeling, Design, and Optimization of Loop Heat Pipes," Energies, MDPI, vol. 17(16), pages 1-40, August.
    13. van der Hoek, Jan Peter & Mol, Stefan & Giorgi, Sara & Ahmad, Jawairia Imtiaz & Liu, Gang & Medema, Gertjan, 2018. "Energy recovery from the water cycle: Thermal energy from drinking water," Energy, Elsevier, vol. 162(C), pages 977-987.
    14. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    15. Marenco-Porto, Carlos A. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Evaluation of Organic Rankine Cycle alternatives for the cement industry using Analytic Hierarchy Process (AHP) methodology and energy-economic-environmental (3E) analysis," Energy, Elsevier, vol. 281(C).
    16. Zuazua-Ros, Amaia & Martín Gómez, César & Ramos, Juan Carlos & Bermejo-Busto, Javier, 2017. "Towards cooling systems integration in buildings: Experimental analysis of a heat dissipation panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 73-82.
    17. Ismail, Nagham & Ouahrani, Djamel, 2022. "Modelling of cooling radiant cubicle for an office room to test cooling performance, thermal comfort and energy savings in hot climates," Energy, Elsevier, vol. 244(PB).
    18. Golzar, Farzin & Silveira, Semida, 2021. "Impact of wastewater heat recovery in buildings on the performance of centralized energy recovery – A case study of Stockholm," Applied Energy, Elsevier, vol. 297(C).
    19. Víctor Echarri-Iribarren & Carlos Rizo-Maestre & Fernando Echarri-Iribarren, 2018. "Healthy Climate and Energy Savings: Using Thermal Ceramic Panels and Solar Thermal Panels in Mediterranean Housing Blocks," Energies, MDPI, vol. 11(10), pages 1-32, October.
    20. Meilani Devi Utami, 2022. "Factors influencing the carbon emissions disclosure in basic and chemical industrial companies listed on the IDX in 2016-2019," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 11(9), pages 193-204, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:171:y:2019:i:c:p:170-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.