IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1762-d342169.html
   My bibliography  Save this article

Performance and Exergy Transfer Analysis of Heat Exchangers with Graphene Nanofluids in Seawater Source Marine Heat Pump System

Author

Listed:
  • Zhe Wang

    (Marine Engineering College, Dalian Maritime University, Dalian 116026, China
    International Center on Energy Sustainable Ships and Ports, Dalian 116026, China)

  • Fenghui Han

    (Marine Engineering College, Dalian Maritime University, Dalian 116026, China)

  • Yulong Ji

    (Marine Engineering College, Dalian Maritime University, Dalian 116026, China)

  • Wenhua Li

    (Marine Engineering College, Dalian Maritime University, Dalian 116026, China)

Abstract

A marine seawater source heat pump is based on the relatively stable temperature of seawater, and uses it as the system’s cold and heat source to provide the ship with the necessary cold and heat energy. This technology is one of the important solutions to reduce ship energy consumption. Therefore, in this paper, the heat exchanger in the CO 2 heat pump system with graphene nano-fluid refrigerant is experimentally studied, and the influence of related factors on its heat transfer enhancement performance is analyzed. First, the paper describes the transformation of the heat pump system experimental bench, the preparation of six different mass concentrations (0~1 wt.%) of graphene nanofluid and its thermophysical properties. Secondly, this paper defines graphene nanofluids as beneficiary fluids, the heat exchanger gains cold fluid heat exergy increase, and the consumption of hot fluid heat is heat exergy decrease. Based on the heat transfer efficiency and exergy efficiency of the heat exchanger, an exergy transfer model was established for a seawater source of tube heat exchanger. Finally, the article carried out a test of enhanced heat transfer of heat exchangers with different concentrations of graphene nanofluid refrigerants under simulated seawater constant temperature conditions and analyzed the test results using energy and an exergy transfer model. The results show that the enhanced heat transfer effect brought by the low concentration (0~0.1 wt.%) of graphene nanofluid is greater than the effect of its viscosity on the performance and has a good exergy transfer effectiveness. When the concentration of graphene nanofluid is too high, the resistance caused by the increase in viscosity will exceed the enhanced heat transfer gain brought by the nanofluid, which results in a significant decrease in the exergy transfer effectiveness.

Suggested Citation

  • Zhe Wang & Fenghui Han & Yulong Ji & Wenhua Li, 2020. "Performance and Exergy Transfer Analysis of Heat Exchangers with Graphene Nanofluids in Seawater Source Marine Heat Pump System," Energies, MDPI, vol. 13(7), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1762-:d:342169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rasikh Tariq & Changhong Zhan & Nadeem Ahmed Sheikh & Xudong Zhao, 2018. "Thermal Performance Enhancement of a Cross-Flow-Type Maisotsenko Heat and Mass Exchanger Using Various Nanofluids," Energies, MDPI, vol. 11(10), pages 1-19, October.
    2. Zhongchao Zhao & Yanrui Zhang & Haojun Mi & Yimeng Zhou & Yong Zhang, 2018. "Experimental Research of a Water-Source Heat Pump Water Heater System," Energies, MDPI, vol. 11(5), pages 1-13, May.
    3. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    4. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    5. Gianluca Lillo & Rita Mastrullo & Alfonso William Mauro & Raniero Trinchieri & Luca Viscito, 2020. "Thermo-Economic Analysis of a Hybrid Ejector Refrigerating System Based on a Low Grade Heat Source," Energies, MDPI, vol. 13(3), pages 1-24, January.
    6. Xinwen Chen & Zhaohua Li & Yi Zhao & Hanying Jiang & Kun Liang & Jingxin Chen, 2019. "Modelling of Refrigerant Distribution in an Oil-Free Refrigeration System using R134a," Energies, MDPI, vol. 12(24), pages 1-15, December.
    7. Ignacio López Paniagua & Ángel Jiménez Álvaro & Javier Rodríguez Martín & Celina González Fernández & Rafael Nieto Carlier, 2019. "Comparison of Transcritical CO 2 and Conventional Refrigerant Heat Pump Water Heaters for Domestic Applications," Energies, MDPI, vol. 12(3), pages 1-17, February.
    8. Valarezo, Andres S. & Sun, X.Y. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Experimental investigation on performance of a novel composite desiccant coated heat exchanger in summer and winter seasons," Energy, Elsevier, vol. 166(C), pages 506-518.
    9. Guillermo Valencia Ochoa & Carlos Acevedo Peñaloza & Jorge Duarte Forero, 2019. "Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine," Energies, MDPI, vol. 12(21), pages 1-21, October.
    10. Zhongchao Zhao & Yimeng Zhou & Xiaolong Ma & Xudong Chen & Shilin Li & Shan Yang, 2019. "Effect of Different Zigzag Channel Shapes of PCHEs on Heat Transfer Performance of Supercritical LNG," Energies, MDPI, vol. 12(11), pages 1-15, May.
    11. Antonella Priarone & Federico Silenzi & Marco Fossa, 2020. "Modelling Heat Pumps with Variable EER and COP in EnergyPlus: A Case Study Applied to Ground Source and Heat Recovery Heat Pump Systems," Energies, MDPI, vol. 13(4), pages 1-22, February.
    12. Yue Sun & Xinting Wang & Rui Long & Fang Yuan & Kun Yang, 2019. "Numerical Investigation and Optimization on Shell Side Performance of A Shell and Tube Heat Exchanger with Inclined Trefoil-Hole Baffles," Energies, MDPI, vol. 12(21), pages 1-23, October.
    13. Michel Pons, 2019. "Exergy Analysis and Process Optimization with Variable Environment Temperature," Energies, MDPI, vol. 12(24), pages 1-19, December.
    14. Wang, Zhe & Li, Yanzhong, 2016. "Layer pattern thermal design and optimization for multistream plate-fin heat exchangers—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 500-514.
    15. Liu, Long & Wang, Mingqing & Chen, Yu, 2019. "A practical research on capillaries used as a front-end heat exchanger of seawater-source heat pump," Energy, Elsevier, vol. 171(C), pages 170-179.
    16. Budi Kristiawan & Agung Tri Wijayanta & Koji Enoki & Takahiko Miyazaki & Muhammad Aziz, 2019. "Heat Transfer Enhancement of TiO 2 /Water Nanofluids Flowing Inside a Square Minichannel with a Microfin Structure: A Numerical Investigation," Energies, MDPI, vol. 12(16), pages 1-21, August.
    17. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    18. Simin Shen & Zhongdong Qian & Bin Ji, 2019. "Numerical Analysis of Mechanical Energy Dissipation for an Axial-Flow Pump Based on Entropy Generation Theory," Energies, MDPI, vol. 12(21), pages 1-22, October.
    19. Ciro Aprea & Adriana Greco & Angelo Maiorino & Claudia Masselli, 2019. "Enhancing the Heat Transfer in an Active Barocaloric Cooling System Using Ethylene-Glycol Based Nanofluids as Secondary Medium," Energies, MDPI, vol. 12(15), pages 1-15, July.
    20. Sergio Bobbo & Laura Fedele & Marco Curcio & Anna Bet & Michele De Carli & Giuseppe Emmi & Fabio Poletto & Andrea Tarabotti & Dimitris Mendrinos & Giulia Mezzasalma & Adriana Bernardi, 2019. "Energetic and Exergetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A in Ground Source Heat Pumps," Energies, MDPI, vol. 12(18), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqiang Zhou & Peijian Zhou & Chun Xiang & Yang Wang & Jiegang Mou & Jiayi Cui, 2023. "A Review of Bionic Structures in Control of Aerodynamic Noise of Centrifugal Fans," Energies, MDPI, vol. 16(11), pages 1-24, May.
    2. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Marcin Kremieniewski, 2020. "Influence of Graphene Oxide on Rheological Parameters of Cement Slurries," Energies, MDPI, vol. 13(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    2. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    3. Kashyap, Sarvesh & Sarkar, Jahar & Kumar, Amitesh, 2021. "Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids," Energy, Elsevier, vol. 225(C).
    4. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    5. Zheng, Xu & Zhang, Yu & Wan, Tinghao & Chen, Kang, 2023. "Experimental study on the performance of a novel superabsorbent polymer and activated carbon composite coated heat exchangers," Energy, Elsevier, vol. 281(C).
    6. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    7. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    8. Grzegorz Ligus & Marek Wasilewski & Szymon Kołodziej & Daniel Zając, 2020. "CFD and PIV Investigation of a Liquid Flow Maldistribution across a Tube Bundle in the Shell-and-Tube Heat Exchanger with Segmental Baffles," Energies, MDPI, vol. 13(19), pages 1-23, October.
    9. Dora Villada-Castillo & Guillermo Valencia-Ochoa & Jorge Duarte-Forero, 2023. "Thermohydraulic and Economic Evaluation of a New Design for Printed Circuit Heat Exchangers in Supercritical CO 2 Brayton Cycle," Energies, MDPI, vol. 16(5), pages 1-24, February.
    10. Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "A Solid-to-Solid 2D Model of a Magnetocaloric Cooler with Thermal Diodes: A Sustainable Way for Refrigerating," Energies, MDPI, vol. 16(13), pages 1-17, July.
    11. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    12. Jovana Radulovic, 2023. "Organic Rankine Cycle: Effective Applications and Technological Advances," Energies, MDPI, vol. 16(5), pages 1-3, February.
    13. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    14. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    15. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    16. Mu, Tong & Zhang, Rui & Xu, Hui & Fei, Zhaodan & Feng, Jiangang & Jin, Yan & Zheng, Yuan, 2023. "Improvement of energy performance of the axial-flow pump by groove flow control technology based on the entropy theory," Energy, Elsevier, vol. 274(C).
    17. Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.
    18. Zhang, Wujie & Yang, Fubin & Zhang, Hongguang & Ping, Xu & Yan, Dong & Wang, Chongyao, 2022. "Application of two-phase pulsating flow in organic Rankine cycle system for diesel engine waste heat recovery," Energy, Elsevier, vol. 243(C).
    19. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    20. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1762-:d:342169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.