IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip3p1154-1161.html
   My bibliography  Save this article

Numerical analysis of temperature non-uniformity and cooling capacity for capillary ceiling radiant cooling panel

Author

Listed:
  • Xie, Dong
  • Wang, Yun
  • Wang, Hanqing
  • Mo, Shunquan
  • Liao, Maili

Abstract

Capillary ceiling radiant cooling panel is a high temperature cooling system, which could pose low energy consumption to meet thermal comfort requirements. A computational fluid dynamics (CFD) simulation study on heat transfer of chilled water flow in the capillary of ceiling radiant cooling panel was performed to attain surface temperature distributions and cooling capacities. Six influencing factors included chilled water inlet parameters, conditions of gypsum plaster and capillary mats structural parameters were considered to obtain the complicated relationships between capillary radiant panel conditions and heat transfer performance. The index of temperature non-uniformity coefficient was proposed to evaluate temperature profiles of ceiling panel surface. The results of the simulation were compared with the values depicted in ASHRAE Handbook and good agreement had been achieved. The average difference between simulation results and the values reported by ASHRAE handbook was within the region of 15%. The research results showed that temperature non-uniformity coefficient was negatively correlated with temperature of chilled inlet water (linear correlation), water velocity (correlation coefficient R = −0.85), and pipe diameter (correlation coefficient R = −0.93), but positively and linearly correlated with tube spacing. Cooling capacity was found to have negative linear correlation with temperature of chilled inlet water, covering thickness and tube spacing.

Suggested Citation

  • Xie, Dong & Wang, Yun & Wang, Hanqing & Mo, Shunquan & Liao, Maili, 2016. "Numerical analysis of temperature non-uniformity and cooling capacity for capillary ceiling radiant cooling panel," Renewable Energy, Elsevier, vol. 87(P3), pages 1154-1161.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p3:p:1154-1161
    DOI: 10.1016/j.renene.2015.08.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Long & Wang, Mingqing & Chen, Yu, 2019. "A practical research on capillaries used as a front-end heat exchanger of seawater-source heat pump," Energy, Elsevier, vol. 171(C), pages 170-179.
    2. Lu, Yanyu & Dong, Jiankai & Liu, Jing, 2020. "Zonal modelling for thermal and energy performance of large space buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Zhengrong Li & Dongkai Zhang & Cui Li, 2020. "Experimental Study on Thermal Response Characteristics of Indoor Environment with Modular Radiant Cooling System," Energies, MDPI, vol. 13(19), pages 1-13, September.
    4. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Liu, Zhongbing & Wu, Zhenghong & He, Xihua, 2017. "Dynamical simulation of building integrated photovoltaic thermoelectric wall system: Balancing calculation speed and accuracy," Applied Energy, Elsevier, vol. 204(C), pages 887-897.
    5. Ismail, Nagham & Ouahrani, Djamel, 2022. "Modelling of cooling radiant cubicle for an office room to test cooling performance, thermal comfort and energy savings in hot climates," Energy, Elsevier, vol. 244(PB).
    6. Mohammad Hakim Mohd Radzai & Chong Tak Yaw & Chin Wai Lim & Siaw Paw Koh & Nur Amirani Ahmad, 2021. "Numerical Analysis on the Performance of a Radiant Cooling Panel with Serpentine-Based Design," Energies, MDPI, vol. 14(16), pages 1-20, August.
    7. Víctor Echarri-Iribarren & Carlos Rizo-Maestre & Fernando Echarri-Iribarren, 2018. "Healthy Climate and Energy Savings: Using Thermal Ceramic Panels and Solar Thermal Panels in Mediterranean Housing Blocks," Energies, MDPI, vol. 11(10), pages 1-32, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p3:p:1154-1161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.