IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v216y2021ics036054422032301x.html
   My bibliography  Save this article

Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management

Author

Listed:
  • Mong, Guo Ren
  • Chong, Cheng Tung
  • Ng, Jo-Han
  • Chong, William Woei Fong
  • Ong, Hwai Chyuan
  • Tran, Manh-Vu

Abstract

The increasing amount of waste generated globally due to industrialisation and economic activities require a proper and efficient waste management route. Turning waste to energy via pyrolysis pathway is a promising solution to reduce the amount of waste while generating useful end products. In the present study, microwave pyrolysis of horse manure for the production of bio-fuels and bio-chemicals is conducted and optimised using a lab-scale reactor. Pyrolytic products derived from optimised parameters show that the energy density of bio-char increased by 38.7% with a surface area of 799.57 m2g-1. The bio-oil was found to be enriched with phenolic content while the gaseous product contained high syngas proportion (67.17 vol%). A life cycle assessment (LCA) on the microwave pyrolysis of horse manure for a modelled pyrolysis plant located in Peninsula Malaysia has been conducted to evaluate the energy consumption, operation cost and environmental impact of each unit processes involved. Processing of horse manure via microwave-induced pyrolysis is demonstrated to be more advantageous as compared to the conventional pyrolysis of swine manure from the aspects of higher conversion efficiency, lower energy consumption and reduced environmental risk. Overall, the LCA of horse manure on microwave pyrolysis shows positive environmental impact as compared to other biowaste treatment methods such as composting and incineration.

Suggested Citation

  • Mong, Guo Ren & Chong, Cheng Tung & Ng, Jo-Han & Chong, William Woei Fong & Ong, Hwai Chyuan & Tran, Manh-Vu, 2021. "Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management," Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:energy:v:216:y:2021:i:c:s036054422032301x
    DOI: 10.1016/j.energy.2020.119194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422032301X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sara Rajabi Hamedani & Tom Kuppens & Robert Malina & Enrico Bocci & Andrea Colantoni & Mauro Villarini, 2019. "Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium," Energies, MDPI, vol. 12(11), pages 1-21, June.
    2. Ola Eriksson & Åsa Hadin & Jay Hennessy & Daniel Jonsson, 2016. "Life Cycle Assessment of Horse Manure Treatment," Energies, MDPI, vol. 9(12), pages 1-19, November.
    3. Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology," Energy, Elsevier, vol. 170(C), pages 423-437.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2023. "Design optimization of fluidized bed pyrolysis for energy and exergy analysis using a simplified comprehensive multistep kinetic model," Energy, Elsevier, vol. 276(C).
    2. Hu, Mao & Guo, Kai & Zhou, Haiqin & Shen, Fei & Zhu, Wenkun & Dai, Lichun, 2024. "Insights into the kinetics, thermodynamics and evolved gases for the pyrolysis of freshly excreted and solid-liquid separated swine manures," Energy, Elsevier, vol. 288(C).
    3. Mohamed, Badr A. & Ruan, Roger & Bilal, Muhammad & Periyasamy, Selvakumar & Awasthi, Mukesh Kumar & Rajamohan, Natarajan & Leng, Lijian, 2024. "Sewage sludge co-pyrolysis with agricultural/forest residues: A comparative life-cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katsuyuki Nakano & Ken Yamagishi, 2021. "Impact of Carbon Tax Increase on Product Prices in Japan," Energies, MDPI, vol. 14(7), pages 1-19, April.
    2. Kledja Canaj & Andi Mehmeti & Julio Berbel, 2021. "The Economics of Fruit and Vegetable Production Irrigated with Reclaimed Water Incorporating the Hidden Costs of Life Cycle Environmental Impacts," Resources, MDPI, vol. 10(9), pages 1-13, September.
    3. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    4. Marco Maialetti & Clio Ciaschini & Giovanni Quaranta & Rosanna Salvia & Donato Scarpitta & Stefano Bigiotti & Francesco Maria Chelli & Luca Salvati, 2024. "Investigating ‘Land-Use Trajectories’ in Mediterranean Rural Areas with Official Statistics and a Multiway Factor Analysis," Sustainability, MDPI, vol. 16(17), pages 1-16, September.
    5. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    6. Hasan, M.M. & Rasul, M.G. & Ashwath, N. & Khan, M.M.K. & Jahirul, M.I., 2022. "Fast pyrolysis of Beauty Leaf Fruit Husk (BLFH) in an auger reactor: Effect of temperature on the yield and physicochemical properties of BLFH oil," Renewable Energy, Elsevier, vol. 194(C), pages 1098-1109.
    7. Růžičková, Jana & Raclavská, Helena & Juchelková, Dagmar & Kucbel, Marek & Raclavský, Konstantin & Švédová, Barbora & Šafář, Michal & Pfeifer, Christoph & Hrbek, Jitka, 2022. "Organic compounds in the char deposits characterising the combustion of unauthorised fuels in residential boilers," Energy, Elsevier, vol. 257(C).
    8. Algirdas Jasinskas & Dionizas Streikus & Egidijus Šarauskis & Mečys Palšauskas & Kęstutis Venslauskas, 2020. "Energy Evaluation and Greenhouse Gas Emissions of Reed Plant Pelletizing and Utilization as Solid Biofuel," Energies, MDPI, vol. 13(6), pages 1-14, March.
    9. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    10. Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.
    11. Oana-Daniela Lupoae & Riana Iren Radu & Alexandru Capatina & Violeta Maria Isai & Nicoleta Bărbuță-Mișu, 2023. "Exploring Precursors of Renewable Energy Portfolio Diversification Using TPB," Energies, MDPI, vol. 16(18), pages 1-19, September.
    12. Lauri Leppäkoski & Miika P. Marttila & Ville Uusitalo & Jarkko Levänen & Vilma Halonen & Mirja H. Mikkilä, 2021. "Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    13. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).
    14. Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).
    15. Singh, Rishikesh Kumar & Chakraborty, Jyoti Prasad & Sarkar, Arnab, 2020. "Optimizing the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterization of solid, liquid and gaseous products," Renewable Energy, Elsevier, vol. 155(C), pages 677-690.
    16. Bahadorian, Amirmahdi & Sadrameli, Seyed Mojtaba & Pahlavanzadeh, Hassan & Ilani Kashkouli, Mohammad Nabi, 2023. "Optimization study of linseed biodiesel production via in-situ transesterification and slow pyrolysis of obtained linseed residue," Renewable Energy, Elsevier, vol. 203(C), pages 10-19.
    17. Svanberg, Martin & Finnsgård, Christian & Flodén, Jonas & Lundgren, Joakim, 2018. "Analyzing animal waste-to-energy supply chains: The case of horse manure," Renewable Energy, Elsevier, vol. 129(PB), pages 830-837.
    18. Roy, Poritosh & Dutta, Animesh & Gallant, Jim, 2020. "Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. Andrea Colantoni & Rodolfo Picchio & Alvaro Marucci & Elena Di Mattia & Valerio Cristofori & Fabio Recanatesi & Mauro Villarini & Danilo Monarca & Massimo Cecchini, 2020. "WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability," Energies, MDPI, vol. 13(22), pages 1-7, November.
    20. Rajabi Hamedani, Sara & Villarini, Mauro & Marcantonio, Vera & di Matteo, Umberto & Monarca, Danilo & Colantoni, Andrea, 2023. "Comparative energy and environmental analysis of different small-scale biomass-fueled CCHP systems," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:216:y:2021:i:c:s036054422032301x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.