IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124018299.html
   My bibliography  Save this article

Simultaneous optimization of electric production, azo dye, and yeast wastewater treatment in microbial fuel cell: Selection of the most suitable optimal conditions by PROMETHEE

Author

Listed:
  • Durna Pişkin, Elif
  • Genç, Nevim
  • Akay, Ramiz Gültekin

Abstract

Microbial fuel cell is a clean technology in which waste treatment and energy production continue simultaneously. Process performance depends on the independent variables and their interaction with each other specific to the waste to be treated. In this study, Microbial Fuel Cell (MFC), in which yeast production process wastewater is oxidized in the anolyte, and azo dye is reduced in the catholyte under abiotic conditions, was optimized using the Response Surface Methodology for maximum waste treatment and energy production. The independent variables were wastewater type, electrode array, and amount of sulfate-reducing inhibitor, while the dependent variables were azo dye removal, maximum power density, chemical oxygen demand (COD) removal, and coulomb efficiency. The effect of variables on all responses was determined using Analysis of Variance (ANOVA) and 3-dimensional (3D) graphs. The suitability of the models was tested by verification experiments under the determined optimum conditions (OPT 1, 2 and 3). Optimum experiments were ranked with the PROMETHEE approach according to azo dye removal (mg/L), maximum power density (mW/m2), COD removal (g/L), coulombic efficiency (%), and electrode cost (€/m2) criteria. The preference order of the optimum experiments was determined as OPT 1>OPT 2>OPT 3. With OPT 1, azo dye removal of 16.8 mg/L, maximum power density of 95.34 mW/m2, COD removal of 5.8 g/L and coulombic efficiency of 0.23 % were achieved. With a 1000 Ω external resistor, the maximum power density and coulombic efficiency increased to 147 mW/m2 and 1.5 %, respectively. In addition, the determined optimum experiments were examined using polarization curve and Electrochemical Impedance Spectroscopy.

Suggested Citation

  • Durna Pişkin, Elif & Genç, Nevim & Akay, Ramiz Gültekin, 2024. "Simultaneous optimization of electric production, azo dye, and yeast wastewater treatment in microbial fuel cell: Selection of the most suitable optimal conditions by PROMETHEE," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018299
    DOI: 10.1016/j.renene.2024.121761
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirza Sikalo & Almira Arnaut-Berilo & Adela Delalic, 2023. "A Combined AHP-PROMETHEE Approach for Portfolio Performance Comparison," IJFS, MDPI, vol. 11(1), pages 1-15, March.
    2. Yan-Ming Chen & Chin-Tsan Wang & Yung-Chin Yang, 2018. "Effect of Wall Boundary Layer Thickness on Power Performance of a Recirculation Microbial Fuel Cell," Energies, MDPI, vol. 11(4), pages 1-11, April.
    3. J. P. Brans & Ph. Vincke, 1985. "Note---A Preference Ranking Organisation Method," Management Science, INFORMS, vol. 31(6), pages 647-656, June.
    4. Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology," Energy, Elsevier, vol. 170(C), pages 423-437.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yanping & Liang, Xia & Liang, Haiming & Yang, Ningman, 2018. "Multiple criteria decision making with interval stochastic variables: A method based on interval stochastic dominance," European Journal of Operational Research, Elsevier, vol. 271(2), pages 632-643.
    2. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    3. Stanojevic, M. & Vranes, S. & Gökalp, I., 2010. "Green accounting for greener energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2473-2491, December.
    4. Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    6. Francesco Sica & Francesco Tajani & Maria Rosaria Guarini & Rossana Ranieri, 2023. "A Sensitivity Index to Perform the Territorial Sustainability in Uncertain Decision-Making Conditions," Land, MDPI, vol. 12(2), pages 1-21, February.
    7. Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
    8. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    9. Mohammad Rahman & Lena Jaumann & Nils Lerche & Fabian Renatus & Ann Buchs & Rudolf Gade & Jutta Geldermann & Martin Sauter, 2015. "Selection of the Best Inland Waterway Structure: A Multicriteria Decision Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2733-2749, June.
    10. Martina Kuncova & Jana Seknickova, 2022. "Two-stage weighted PROMETHEE II with results’ visualization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 547-571, June.
    11. Bertanza, Giorgio & Baroni, Pietro & Canato, Matteo, 2016. "Ranking sewage sludge management strategies by means of Decision Support Systems: A case study," Resources, Conservation & Recycling, Elsevier, vol. 110(C), pages 1-15.
    12. Mingers, John, 2011. "Soft OR comes of age--but not everywhere!," Omega, Elsevier, vol. 39(6), pages 729-741, December.
    13. Şebnem Karul Tonka & Ismail Ekmekci, 2022. "A Model Proposal for Occupational Health and Safety Performance Measurement in Geothermal Drilling Areas," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    14. Alessio Ishizaka & Philippe Nemery, 2013. "A Multi-Criteria Group Decision Framework for Partner Grouping When Sharing Facilities," Group Decision and Negotiation, Springer, vol. 22(4), pages 773-799, July.
    15. Kunsch, Pierre L. & Ishizaka, Alessio, 2019. "A note on using centroid weights in additive multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 391-393.
    16. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    17. Víctor Blanco & Román Salmerón & Samuel Gómez-Haro, 2018. "A Multicriteria Selection System Based on Player Performance: Case Study—The Spanish ACB Basketball League," Group Decision and Negotiation, Springer, vol. 27(6), pages 1029-1046, December.
    18. Zaimovic Azra & Arnaut-Berilo Almira & Bešlija Rijad, 2024. "International Portfolio Diversification Benefits: An Empirical Investigation of the 28 European Stock Markets During the Period 2014–2024," South East European Journal of Economics and Business, Sciendo, vol. 19(1), pages 96-112.
    19. Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).
    20. Lahdelma, Risto & Makkonen, Simo & Salminen, Pekka, 2009. "Two ways to handle dependent uncertainties in multi-criteria decision problems," Omega, Elsevier, vol. 37(1), pages 79-92, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.