IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i5p4587-4606d49896.html
   My bibliography  Save this article

Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements

Author

Listed:
  • Matthias Rogge

    (Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Jaegerstr. 17/19, 52066 Aachen, Germany
    Juelich Aachen Research Alliance, JARA-Energy, Wilhelm-Johnen-Str. 1, 52425 Juelich, Germany)

  • Sebastian Wollny

    (Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Jaegerstr. 17/19, 52066 Aachen, Germany)

  • Dirk Uwe Sauer

    (Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Jaegerstr. 17/19, 52066 Aachen, Germany
    Juelich Aachen Research Alliance, JARA-Energy, Wilhelm-Johnen-Str. 1, 52425 Juelich, Germany
    Institute for Power Generation and Storage Systems (PGS), E.ON ERC, RWTH Aachen University, Mathieustr. 10, 52074 Aachen, Germany)

Abstract

The electrification of public transport bus networks can be carried out utilizing different technological solutions, like trolley, battery or fuel cell buses. The purpose of this paper is to analyze how and to what extent existing bus networks can be electrified with fast charging battery buses. The so called opportunity chargers use mainly the regular dwell time at the stops to charge their batteries. This results in a strong linkage between the vehicle scheduling and the infrastructure planning. The analysis is based on real-world data of the bus network in Muenster, a mid-sized city in Germany. The outcomes underline the necessity to focus on entire vehicle schedules instead on individual trips. The tradeoff between required battery capacity and charging power is explained in detail. Furthermore, the impact on the electricity grid is discussed based on the load profiles of a selected charging station and a combined load profile of the entire network.

Suggested Citation

  • Matthias Rogge & Sebastian Wollny & Dirk Uwe Sauer, 2015. "Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements," Energies, MDPI, vol. 8(5), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:4587-4606:d:49896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/5/4587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/5/4587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chung-Won Cho & Ho-Seong Lee & Jong-Phil Won & Moo-Yeon Lee, 2012. "Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus," Energies, MDPI, vol. 5(3), pages 1-12, March.
    2. Ximing Wang & Hongwen He & Fengchun Sun & Xiaokun Sun & Henglu Tang, 2013. "Comparative Study on Different Energy Management Strategies for Plug-In Hybrid Electric Vehicles," Energies, MDPI, vol. 6(11), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Łebkowski, 2019. "Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions," Energies, MDPI, vol. 12(5), pages 1-39, March.
    2. Farouk Odeim & Jürgen Roes & Angelika Heinzel, 2015. "Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System," Energies, MDPI, vol. 8(7), pages 1-26, June.
    3. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.
    4. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    5. Jiangyi Lv & Hongwen He & Wei Liu & Yong Chen & Fengchun Sun, 2019. "Vehicle Velocity Estimation Fusion with Kinematic Integral and Empirical Correction on Multi-Timescales," Energies, MDPI, vol. 12(7), pages 1-24, April.
    6. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    7. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    8. Wu, Changcheng & Ruan, Jiageng & Cui, Hanghang & Zhang, Bin & Li, Tongyang & Zhang, Kaixuan, 2023. "The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid ," Energy, Elsevier, vol. 262(PB).
    9. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    10. Yongpeng Shen & Zhendong He & Dongqi Liu & Binjie Xu, 2016. "Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model," Energies, MDPI, vol. 9(2), pages 1-18, February.
    11. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    12. Kenneth R. Uren & George van Schoor & Martin van Eldik & Johannes J. A. de Bruin, 2020. "An Energy Graph-Based Approach to Fault Diagnosis of a Transcritical CO 2 Heat Pump," Energies, MDPI, vol. 13(7), pages 1-34, April.
    13. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Kim, Yongchan, 2015. "Performance characteristics of a dual-evaporator heat pump system for effective dehumidifying and heating of a cabin in electric vehicles," Applied Energy, Elsevier, vol. 146(C), pages 29-37.
    14. Bo Long & Shin Teak Lim & Ji Hyoung Ryu & Kil To Chong, 2013. "Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors," Energies, MDPI, vol. 7(1), pages 1-16, December.
    15. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Jung, Hae Won & Baek, Changhyun & Kim, Yongchan, 2014. "Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles," Applied Energy, Elsevier, vol. 119(C), pages 1-9.
    16. Moo-Yeon Lee & Yongchan Kim & Dong-Yeon Lee, 2012. "Experimental Study on Frost Height of Round Plate Fin-Tube Heat Exchangers for Mobile Heat Pumps," Energies, MDPI, vol. 5(9), pages 1-13, September.
    17. Gianluca Brando & Adolfo Dannier & Andrea Del Pizzo, 2022. "Efficiency Analytical Characterization for Brushless Electric Drives," Energies, MDPI, vol. 15(8), pages 1-11, April.
    18. Aimin Du & Yaoyi Chen & Dongxu Zhang & Yeyang Han, 2021. "Multi-Objective Energy Management Strategy Based on PSO Optimization for Power-Split Hybrid Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-18, April.
    19. Ahn, Jae Hwan & Lee, Joo Seong & Baek, Changhyun & Kim, Yongchan, 2016. "Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy," Energy, Elsevier, vol. 115(P1), pages 67-75.
    20. Moo-Yeon Lee & Ho-Seong Lee & Hong-Phil Won, 2012. "Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle," Energies, MDPI, vol. 5(5), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:4587-4606:d:49896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.