IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp664-673.html
   My bibliography  Save this article

Production of biochars from textile fibres through torrefaction and their characterisation

Author

Listed:
  • Hanoğlu, Alper
  • Çay, Ahmet
  • Yanık, Jale

Abstract

In this study, the utilization of textile fibres as energy feedstock in the form of biochar was investigated depending on the fibre type. The biochars were produced from waste natural and synthetic fibres and its blends. For this purpose, different types of textile fibres (cotton, viscose, polyester, acrylic) and their blends (cotton/polyester, acrylic/wool, acrylic/polyester, acrylic/viscose) were torrefied at temperatures between 300 and 400 °C. The effects of torrefaction temperature and fibre type on biochar yield and biochar properties (fuel properties, morphological and structural properties and combustion characteristics) were investigated. The results showed that the temperature had a significant effect on biochar yield whereas the fibre type was the only significant factor on energy densification ratio and biochar properties. The torrefaction of tested fibres and blends resulted in an energy-intensive solid fuel, having a negligible amount of ash and sulphur. Although torrefied acrylic based textile fibres had similar H/C and O/C ratios to bituminous coal, it was concluded that high nitrogen contents will limit their usage as fuel. Overally, this study showed that torrefaction of cotton and cotton/polyester textile wastes is a promising process for the production of a solid fuel, which can be used as a substitute fuel in coal/waste co-firing systems.

Suggested Citation

  • Hanoğlu, Alper & Çay, Ahmet & Yanık, Jale, 2019. "Production of biochars from textile fibres through torrefaction and their characterisation," Energy, Elsevier, vol. 166(C), pages 664-673.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:664-673
    DOI: 10.1016/j.energy.2018.10.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218321133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. He, Xinyan & Liu, Zhaoxia & Niu, Wenjuan & Yang, Li & Zhou, Tan & Qin, Di & Niu, Zhiyou & Yuan, Qiaoxia, 2018. "Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues," Energy, Elsevier, vol. 143(C), pages 746-756.
    3. Anupam, Kumar & Sharma, Arvind Kumar & Lal, Priti Shivhare & Dutta, Suman & Maity, Sudip, 2016. "Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding," Energy, Elsevier, vol. 106(C), pages 743-756.
    4. Arteaga-Pérez, Luis E. & Segura, Cristina & Bustamante-García, Verónica & Gómez Cápiro, Oscar & Jiménez, Romel, 2015. "Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures," Energy, Elsevier, vol. 93(P2), pages 1731-1741.
    5. He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ziliang & Lim, C. Jim & Grace, John R., 2019. "A comprehensive study of sawdust torrefaction in a dual-compartment slot-rectangular spouted bed reactor," Energy, Elsevier, vol. 189(C).
    2. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    2. Umut Şen & Bruno Esteves & Helena Pereira, 2023. "Pyrolysis and Extraction of Bark in a Biorefineries Context: A Critical Review," Energies, MDPI, vol. 16(13), pages 1-23, June.
    3. Małgorzata Sieradzka & Ningbo Gao & Cui Quan & Agata Mlonka-Mędrala & Aneta Magdziarz, 2020. "Biomass Thermochemical Conversion via Pyrolysis with Integrated CO 2 Capture," Energies, MDPI, vol. 13(5), pages 1-18, February.
    4. José Airton de Mattos Carneiro-Junior & Giulyane Felix de Oliveira & Carine Tondo Alves & Heloysa Martins Carvalho Andrade & Silvio Alexandre Beisl Vieira de Melo & Ednildo Andrade Torres, 2021. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction," Energies, MDPI, vol. 14(12), pages 1-17, June.
    5. Wang, L. & Barta-Rajnai, E. & Skreiberg, Ø. & Khalil, R. & Czégény, Z. & Jakab, E. & Barta, Z. & Grønli, M., 2018. "Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark," Applied Energy, Elsevier, vol. 227(C), pages 137-148.
    6. Wang, Ziliang & Lim, C. Jim & Grace, John R., 2019. "A comprehensive study of sawdust torrefaction in a dual-compartment slot-rectangular spouted bed reactor," Energy, Elsevier, vol. 189(C).
    7. Álvarez, Ana & Nogueiro, Dositeo & Pizarro, Consuelo & Matos, María & Bueno, Julio L., 2018. "Non-oxidative torrefaction of biomass to enhance its fuel properties," Energy, Elsevier, vol. 158(C), pages 1-8.
    8. Arteaga-Pérez, Luis E. & Gómez Cápiro, Oscar & Romero, Romina & Delgado, Aaron & Olivera, Patricia & Ronsse, Frederik & Jiménez, Romel, 2017. "In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts," Energy, Elsevier, vol. 128(C), pages 701-712.
    9. Chen, Congjin & Zhu, Jingxian & Jia, Shuang & Mi, Shuai & Tong, Zhangfa & Li, Zhixia & Li, Mingfei & Zhang, Yanjuan & Hu, Yuhua & Huang, Zuqiang, 2018. "Effect of ethanol on Mulberry bark hydrothermal liquefaction and bio-oil chemical compositions," Energy, Elsevier, vol. 162(C), pages 460-475.
    10. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    11. Mao, Xiao & Kang, Qinhao & Liu, Yang & Siyal, Asif Ali & Ao, Wenya & Ran, Chunmei & Fu, Jie & Deng, Zeyu & Song, Yongmeng & Dai, Jianjun, 2019. "Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor: Biochar characterization and analysis," Energy, Elsevier, vol. 168(C), pages 573-584.
    12. Ignacio, Luís Henrique da Silva & Santos, Pedro Eduardo de Almeida & Duarte, Carlos Antonio Ribeiro, 2019. "An experimental assessment of Eucalyptus urosemente energy potential for biomass production in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 361-369.
    13. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
    15. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    16. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
    17. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    18. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    19. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    20. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:664-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.