IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp573-584.html
   My bibliography  Save this article

Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor: Biochar characterization and analysis

Author

Listed:
  • Mao, Xiao
  • Kang, Qinhao
  • Liu, Yang
  • Siyal, Asif Ali
  • Ao, Wenya
  • Ran, Chunmei
  • Fu, Jie
  • Deng, Zeyu
  • Song, Yongmeng
  • Dai, Jianjun

Abstract

Microwave-assisted pyrolysis (MWAP) of furfural residue (FR) was performed in a continuously operated auger reactor. The effects of temperature and additives on pyrolysis products and char properties were investigated. The yield of FRBC (furfural residue biochar) decreased to 43.62 wt.% and non-condensable gas yield increased to 40.37 wt.% with temperature increasing to 750 °C. However, condensate yield increased with increasing temperature from 450 to 550 °C, reaching maximum (i.e. 21.49 wt.%) at 550 °C, then decreased to 15.65 wt.% as temperature reached 750 °C. Kaolin and K2CO3 promoted production of non-condensable gases and CaO increased the yield of FRBC. The relative proportion (RP) values of carbon, hydrogen, nitrogen and sulfur in FRBC were 50.49–65.07 wt.%, 13.05–26.81 wt.%, 61.99–79.84 wt.% and 60.93–74.16 wt.%, respectively. The highest iodine adsorption value of 127mg/g and methylene blue number of 59 mg/g were achieved for FRBC at 450 °C. Kaolin, CaO and K2CO3 increased methylene blue number, and K2CO3 significantly increased iodine adsorption capacity of FRBC. CaO retained sulfur, chlorine, zinc, and kaolin showed greater retention capacities for copper, nickel, chromium and zinc. The major crystalline phases of sulfur and nitrogen were CaSO4, K2Ca2(SO4)3, Zr(NO3)4 in FRBC and K2Ca2(SO4)3 in FR.

Suggested Citation

  • Mao, Xiao & Kang, Qinhao & Liu, Yang & Siyal, Asif Ali & Ao, Wenya & Ran, Chunmei & Fu, Jie & Deng, Zeyu & Song, Yongmeng & Dai, Jianjun, 2019. "Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor: Biochar characterization and analysis," Energy, Elsevier, vol. 168(C), pages 573-584.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:573-584
    DOI: 10.1016/j.energy.2018.11.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421832259X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. He, Xinyan & Liu, Zhaoxia & Niu, Wenjuan & Yang, Li & Zhou, Tan & Qin, Di & Niu, Zhiyou & Yuan, Qiaoxia, 2018. "Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues," Energy, Elsevier, vol. 143(C), pages 746-756.
    3. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    4. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    5. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khiari, Besma & Jeguirim, Mejdi & Limousy, Lionel & Bennici, Simona, 2019. "Biomass derived chars for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 253-273.
    2. Zhou, Chunbao & Zhang, Yingwen & Liu, Yang & Deng, Zeyu & Li, Xiangtong & Wang, Long & Dai, Jianjun & Song, Yongmeng & Jiang, Zhihui & Qu, Junshen & Siyal, Asif Ali, 2021. "Co-pyrolysis of textile dyeing sludge and red wood waste in a continuously operated auger reactor under microwave irradiation," Energy, Elsevier, vol. 218(C).
    3. Yong Sun & Zhi Wang & Yuyingnan Liu & Xianghui Meng & Jingbo Qu & Changyu Liu & Bin Qu, 2019. "A Review on the Transformation of Furfural Residue for Value-Added Products," Energies, MDPI, vol. 13(1), pages 1-19, December.
    4. Liu, Yang & Song, Yongmeng & Ran, Chunmei & Siyal, Asif Ali & Chtaeva, Polina & Dai, Jianjun & Jiang, Zhihui & Deng, Zeyu & Zhang, Tianhao & Ao, Wenya & Fu, Jie, 2020. "Pyrolysis of furfural residue in a bubbling fluidized bed reactor: Biochar characterization and analysis," Energy, Elsevier, vol. 211(C).
    5. Fu, Jie & Mao, Xiao & Siyal, Asif Ali & Liu, Yang & Ao, Wenya & Liu, Guangqing & Dai, Jianjun, 2021. "Pyrolysis of furfural residue pellets: Physicochemical characteristics of pyrolytic pellets and pyrolysis kinetics," Renewable Energy, Elsevier, vol. 179(C), pages 2136-2146.
    6. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    7. Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
    8. Dudziak, M. & Werle, S. & Marszałek, A. & Sobek, S. & Magdziarz, A., 2022. "Comparative assessment of the biomass solar pyrolysis biochars combustion behavior and zinc Zn(II) adsorption," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    2. Zhang, Chenting & Chao, Li & Zhang, Zhanming & Zhang, Lijun & Li, Qingyin & Fan, Huailin & Zhang, Shu & Liu, Qing & Qiao, Yingyun & Tian, Yuanyu & Wang, Yi & Hu, Xun, 2021. "Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    4. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    5. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    7. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.
    8. Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
    9. Xu, Hao & Cheng, Shuo & Hungwe, Douglas & Yoshikawa, Kunio & Takahashi, Fumitake, 2022. "Co-pyrolysis coupled with torrefaction enhances hydrocarbons production from rice straw and oil sludge: The effect of torrefaction on co-pyrolysis synergistic behaviors," Applied Energy, Elsevier, vol. 327(C).
    10. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    11. Andrzej Biessikirski & Dominik Czerwonka & Jolanta Biegańska & Łukasz Kuterasiński & Magdalena Ziąbka & Michał Dworzak & Michał Twardosz, 2020. "Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing," Energies, MDPI, vol. 14(1), pages 1-15, December.
    12. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Kim, Heeyoon & Yu, Seunghan & Ra, Howon & Yoon, Sungmin & Ryu, Changkook, 2023. "Prediction of pyrolysis kinetics for torrefied biomass based on raw biomass properties and torrefaction severity," Energy, Elsevier, vol. 278(C).
    14. Singh, Rishikesh Kumar & Chakraborty, Jyoti Prasad & Sarkar, Arnab, 2020. "Optimizing the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterization of solid, liquid and gaseous products," Renewable Energy, Elsevier, vol. 155(C), pages 677-690.
    15. Bai, Xiaopeng & Wang, Guanghui & Zhu, Zheng & Cai, Chen & Wang, Zhiqin & Wang, Decheng, 2020. "Investigation of improving the yields and qualities of pyrolysis products with combination rod-milled and torrefaction pretreatment," Renewable Energy, Elsevier, vol. 151(C), pages 446-453.
    16. Hanoğlu, Alper & Çay, Ahmet & Yanık, Jale, 2019. "Production of biochars from textile fibres through torrefaction and their characterisation," Energy, Elsevier, vol. 166(C), pages 664-673.
    17. Balasundram, Vekes & Ibrahim, Norazana & Kasmani, Rafiziana Md. & Isha, Ruzinah & Hamid, Mohd. Kamaruddin Abd. & Hasbullah, Hasrinah & Ali, Roshafima Rasit, 2018. "Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil," Applied Energy, Elsevier, vol. 220(C), pages 787-799.
    18. He, Yifeng & Zhao, Yingnan & Chai, Meiyun & Zhou, Zhongyue & Sarker, Manobendro & Li, Chong & Liu, Ronghou & Cai, Junmeng & Liu, Xinghua, 2020. "Comparative study of fast pyrolysis, hydropyrolysis and catalytic hydropyrolysis of poplar sawdust and rice husk in a modified Py-GC/MS microreactor system: Insights into product distribution, quantum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. José Airton de Mattos Carneiro-Junior & Giulyane Felix de Oliveira & Carine Tondo Alves & Heloysa Martins Carvalho Andrade & Silvio Alexandre Beisl Vieira de Melo & Ednildo Andrade Torres, 2021. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction," Energies, MDPI, vol. 14(12), pages 1-17, June.
    20. González Martínez, María & Dupont, Capucine & da Silva Perez, Denilson & Mortha, Gérard & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: Experimental thermogravimetric solid mass loss," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:573-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.