IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp532-549.html
   My bibliography  Save this article

Thermo-economic optimization of a novel hybrid renewable trigeneration plant

Author

Listed:
  • Calise, Francesco
  • Cappiello, Francesco L.
  • Dentice d'Accadia, Massimo
  • Vicidomini, Maria

Abstract

This work presents a novel renewable trigeneration plant powered by solar, geothermal and biomass energy, producing simultaneously electricity, heat and cool. The developed system includes a 193 m2 photovoltaic field, a 159 kWh lithium-ion battery, a 30 kWe organic Rankine cycle, a 350 kWth biomass auxiliary heater, a geothermal well at 96 °C and a 80 kW single stage H2O/LiBr absorption chiller. The Organic Rankine Cycle is mainly supplied by the geothermal well, producing electricity. An additional amount of electricity is produced by the photovoltaic panels. A detailed dynamic simulation model was developed in TRNSYS environment in order to calculate both energy and economic performance of the plant. The model includes algorithms validated versus literature and experimental data. The model of the renewable trigeneration plant is used for a suitable case study, a residential building in the Campi Flegrei (Naples, South Italy) area, a well-known location for its geothermal sources and good solar availability. The proposed plant exhibits promising energy performance achieving a primary energy saving of 139%, mainly due to the obtained excess energy. From the economic point of view, the proposed plant gets a limited profitability, showing a payback period of about 19 years, mainly due to the high capital cost of the employed technologies. A thermo-economic optimization is also implemented, considering photovoltaic field and battery capacities as independent variables. The results of the optimization suggest increasing the area of the photovoltaic field and to limit the capacity of electric energy storage system, due to the high specific capital cost of the lithium-ion battery. Finally, a multi-objective optimization is also carried out, aiming at calculating the set of the optimal design variables of the proposed trigeneration plant.

Suggested Citation

  • Calise, Francesco & Cappiello, Francesco L. & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2021. "Thermo-economic optimization of a novel hybrid renewable trigeneration plant," Renewable Energy, Elsevier, vol. 175(C), pages 532-549.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:532-549
    DOI: 10.1016/j.renene.2021.04.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calise, Francesco & d’Accadia, Massimo Dentice & Vicidomini, Maria, 2019. "Optimization and dynamic analysis of a novel polygeneration system producing heat, cool and fresh water," Renewable Energy, Elsevier, vol. 143(C), pages 1331-1347.
    2. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    3. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    4. Taljan, Gregor & Verbič, Gregor & Pantoš, Miloš & Sakulin, Manfred & Fickert, Lothar, 2012. "Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage," Renewable Energy, Elsevier, vol. 41(C), pages 29-38.
    5. Calise, Francesco & Dentice d'Accadia, Massimo & Piacentino, Antonio, 2014. "A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 67(C), pages 129-148.
    6. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    7. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    8. F. Tchanche, Bertrand & Pétrissans, M. & Papadakis, G., 2014. "Heat resources and organic Rankine cycle machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1185-1199.
    9. Altun, A.F. & Kilic, M., 2020. "Thermodynamic performance evaluation of a geothermal ORC power plant," Renewable Energy, Elsevier, vol. 148(C), pages 261-274.
    10. Calise, Francesco & Dentice d’Accadia, Massimo & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Transient analysis of solar polygeneration systems including seawater desalination: A comparison between linear Fresnel and evacuated solar collectors," Energy, Elsevier, vol. 172(C), pages 647-660.
    11. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    12. Galindo Noguera, Ana Lisbeth & Mendoza Castellanos, Luis Sebastian & Silva Lora, Electo Eduardo & Melian Cobas, Vladimir Rafael, 2018. "Optimum design of a hybrid diesel-ORC / photovoltaic system using PSO: Case study for the city of Cujubim, Brazil," Energy, Elsevier, vol. 142(C), pages 33-45.
    13. Bicer, Yusuf & Dincer, Ibrahim, 2016. "Analysis and performance evaluation of a renewable energy based multigeneration system," Energy, Elsevier, vol. 94(C), pages 623-632.
    14. Calise, Francesco & Cappiello, Francesco Liberato & Cartenì, Armando & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2019. "A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 97-114.
    15. Uris, María & Linares, José Ignacio & Arenas, Eva, 2017. "Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain," Energy, Elsevier, vol. 133(C), pages 969-985.
    16. Pili, R. & Eyerer, S. & Dawo, F. & Wieland, C. & Spliethoff, H., 2020. "Development of a non-linear state estimator for advanced control of an ORC test rig for geothermal application," Renewable Energy, Elsevier, vol. 161(C), pages 676-690.
    17. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic simulation, energy and economic comparison between BIPV and BIPVT collectors coupled with micro-wind turbines," Energy, Elsevier, vol. 191(C).
    18. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    19. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Eyerer, Sebastian & Dawo, Fabian & Wieland, Christoph & Spliethoff, Hartmut, 2020. "Advanced ORC architecture for geothermal combined heat and power generation," Energy, Elsevier, vol. 205(C).
    21. Jankowski, Marcin & Borsukiewicz, Aleksandra & Wiśniewski, Sławomir & Hooman, Kamel, 2020. "Multi-objective analysis of an influence of a geothermal water salinity on optimal operating parameters in low-temperature ORC power plant," Energy, Elsevier, vol. 202(C).
    22. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    23. Ahmadian, Ali & Sedghi, Mahdi & Elkamel, Ali & Fowler, Michael & Aliakbar Golkar, Masoud, 2018. "Plug-in electric vehicle batteries degradation modeling for smart grid studies: Review, assessment and conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2609-2624.
    24. Świerzewski, Mateusz & Kalina, Jacek, 2020. "Optimisation of biomass-fired cogeneration plants using ORC technology," Renewable Energy, Elsevier, vol. 159(C), pages 195-214.
    25. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Maria Vicidomini, 2020. "Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations," Energies, MDPI, vol. 13(9), pages 1-29, May.
    26. Kosmadakis, George & Landelle, Arnaud & Lazova, Marija & Manolakos, Dimitris & Kaya, Alihan & Huisseune, Henk & Karavas, Christos-Spyridon & Tauveron, Nicolas & Revellin, Remi & Haberschill, Philippe , 2016. "Experimental testing of a low-temperature organic Rankine cycle (ORC) engine coupled with concentrating PV/thermal collectors: Laboratory and field tests," Energy, Elsevier, vol. 117(P1), pages 222-236.
    27. Tourkov, Konstantin & Schaefer, Laura, 2015. "Performance evaluation of a PVT/ORC (photovoltaic thermal/organic Rankine cycle) system with optimization of the ORC and evaluation of several PV (photovoltaic) materials," Energy, Elsevier, vol. 82(C), pages 839-849.
    28. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2024. "Semi-stationary and dynamic simulation models: A critical comparison of the energy and economic savings for the energy refurbishment of buildings," Energy, Elsevier, vol. 300(C).
    2. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    3. Tao, Hai & Alawi, Omer A. & Kamar, Haslinda Mohamed & Nafea, Ahmed Adil & AL-Ani, Mohammed M. & Abba, Sani I. & Salami, Babatunde Abiodun & Oudah, Atheer Y. & Mohammed, Mustafa K.A., 2024. "Development of integrative data intelligence models for thermo-economic performances prediction of hybrid organic rankine plants," Energy, Elsevier, vol. 292(C).
    4. Schifflechner, Christopher & Kuhnert, Lara & Irrgang, Ludwig & Dawo, Fabian & Kaufmann, Florian & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Geothermal trigeneration systems with Organic Rankine Cycles: Evaluation of different plant configurations considering part load behaviour," Renewable Energy, Elsevier, vol. 207(C), pages 218-233.
    5. Francesco Liberato Cappiello & Luca Cimmino & Marialuisa Napolitano & Maria Vicidomini, 2022. "Thermoeconomic Analysis of Biomethane Production Plants: A Dynamic Approach," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    6. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Vicidomini, Maria & Petrakopoulou, Fontina, 2024. "Thermoeconomic analysis of a novel topology of a 5th generation district energy network for a commercial user," Applied Energy, Elsevier, vol. 371(C).
    7. Maria Vicidomini & Diana D’Agostino, 2022. "Geothermal Source Exploitation for Energy Saving and Environmental Energy Production," Energies, MDPI, vol. 15(17), pages 1-5, September.
    8. Zhang, Xiaofeng & Su, Junjie & Jiao, Fan & Zeng, Rong & Pan, Jinjun & He, Xu & Deng, Qiaolin & Li, Hongqiang, 2024. "Performance investigation and operation optimization of an innovative hybrid renewable energy integration system for commercial building complex and hydrogen vehicles," Energy, Elsevier, vol. 301(C).
    9. Ang, Yu Qian & Polly, Allison & Kulkarni, Aparna & Chambi, Gloria Bahl & Hernandez, Matthew & Haji, Maha N., 2022. "Multi-objective optimization of hybrid renewable energy systems with urban building energy modeling for a prototypical coastal community," Renewable Energy, Elsevier, vol. 201(P1), pages 72-84.
    10. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
    11. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    13. Kallio, Sonja & Siroux, Monica, 2022. "Exergy and exergo-economic analysis of a hybrid renewable energy system under different climate conditions," Renewable Energy, Elsevier, vol. 194(C), pages 396-414.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Maria Vicidomini, 2020. "Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations," Energies, MDPI, vol. 13(9), pages 1-29, May.
    2. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    3. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    4. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    5. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic simulation, energy and economic comparison between BIPV and BIPVT collectors coupled with micro-wind turbines," Energy, Elsevier, vol. 191(C).
    6. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    7. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    9. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    10. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    11. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    12. Calise, Francesco & Dentice d’Accadia, Massimo & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Transient analysis of solar polygeneration systems including seawater desalination: A comparison between linear Fresnel and evacuated solar collectors," Energy, Elsevier, vol. 172(C), pages 647-660.
    13. Francesco Calise & Francesco L. Cappiello & Maria Vicidomini & Jian Song & Antonio M. Pantaleo & Suzan Abdelhady & Ahmed Shaban & Christos N. Markides, 2021. "Energy and Economic Assessment of Energy Efficiency Options for Energy Districts: Case Studies in Italy and Egypt," Energies, MDPI, vol. 14(4), pages 1-24, February.
    14. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Abdelhay, AymanO. & Fath, HassanE.S. & Nada, S.A., 2020. "Solar driven polygeneration system for power, desalination and cooling," Energy, Elsevier, vol. 198(C).
    16. Sarvar-Ardeh, Sajjad & Rashidi, Saman & Rafee, Roohollah & Li, Guiqiang, 2024. "Recent advances in the applications of solar-driven co-generation systems for heat, freshwater and power," Renewable Energy, Elsevier, vol. 225(C).
    17. Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos & Hassan, Ibrahim, 2020. "Dynamic modelling and control of single, double and triple effect absorption refrigeration cycles," Energy, Elsevier, vol. 210(C).
    18. Chen, Heng & Wang, Yihan & Li, Jiarui & Xu, Gang & Lei, Jing & Liu, Tong, 2022. "Thermodynamic analysis and economic assessment of an improved geothermal power system integrated with a biomass-fired cogeneration plant," Energy, Elsevier, vol. 240(C).
    19. Calise, Francesco & d’Accadia, Massimo Dentice & Vicidomini, Maria, 2019. "Optimization and dynamic analysis of a novel polygeneration system producing heat, cool and fresh water," Renewable Energy, Elsevier, vol. 143(C), pages 1331-1347.
    20. Calise, Francesco & Cappiello, Francesco Liberato & Cartenì, Armando & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2019. "A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 97-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:532-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.