IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v41y2012icp29-38.html
   My bibliography  Save this article

Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage

Author

Listed:
  • Taljan, Gregor
  • Verbič, Gregor
  • Pantoš, Miloš
  • Sakulin, Manfred
  • Fickert, Lothar

Abstract

A novel methodology for Optimal Sizing of Biomass-Fired Organic Rankine Cycle (ORC) Combined Heat and Power (CHP) System with Heat Storage is presented in this paper. The ORC technology received a lot of attention recently, especially for medium scale applications (e.g. district heating) where market potential is substantial. Another push for the technology is provided in the context of recent EU regulations to tackle the rising environmental problems, i.e. the 20-20-20 directive, which should provide another boost for the use of renewables in electric power systems. In this study, the simulation of the operation of a biomass-fired ORC CHP system is discussed first, where the dispatch of the plant is optimized to maximize the profits from electricity and heat sales. Based on the optimal dispatch values, an economic evaluation is carried out to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return for a realistic scenario. Lastly, an optimization procedure for optimal sizing of the generation architecture is convolved with the optimal operation and economic evaluation models, to achieve maximal rates of return on the ORC CHP investment. The results of the present studies demonstrate that the heat storage is not economically feasible in the assumed setup making profits from increasing the flexibility of the ORC CHP operation. Furthermore, the results show favorable economic parameters for the ORC CHP setup without the heat storage for annual heat demands higher than 5 GWh and biomass prices lower than 17 EUR/MWh.

Suggested Citation

  • Taljan, Gregor & Verbič, Gregor & Pantoš, Miloš & Sakulin, Manfred & Fickert, Lothar, 2012. "Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage," Renewable Energy, Elsevier, vol. 41(C), pages 29-38.
  • Handle: RePEc:eee:renene:v:41:y:2012:i:c:p:29-38
    DOI: 10.1016/j.renene.2011.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111005647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:41:y:2012:i:c:p:29-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.