IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics036054422400046x.html
   My bibliography  Save this article

Ammonia fired gas turbines: Recent advances and future perspectives

Author

Listed:
  • Pashchenko, Dmitry

Abstract

Transition to carbon-neutral energy generation is a reality, and great efforts are being made in this direction in the last years. Ammonia is a promising carbon-free fuel, and it can be used as a gas turbine fuel in existing power generation cycles without significant modification. This paper considers various aspects of the use of ammonia as a gas turbine fuel: it provides a review of existing ammonia-fired gas turbines and conducts a study of the prospective technology of using ammonia via thermochemical transformation into hydrogen-rich gas. Moreover, this paper considers on-board hydrogen production technology via thermochemical ammonia transformation. The ammonia fired chemically recuperated gas turbine is analyzed for which the thermal efficiency can be increased up to 5%–7% comparing to traditional gas turbines. Moreover, hydrogen-rich fuel with a hydrogen mole fraction up to 75% is used as a fuel, leading to more stable combustion with lower NOx emission up to 6–10 ppm. Additionally, an approach to on-board hydrogen production from ammonia via the utilization of solar energy is investigated. It is shown that solar energy can replace up to 25% of heat obtained via ammonia combustion. The paper discusses future perspectives in investigations for ammonia-fired gas turbines with on-board ammonia transformation.

Suggested Citation

  • Pashchenko, Dmitry, 2024. "Ammonia fired gas turbines: Recent advances and future perspectives," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422400046x
    DOI: 10.1016/j.energy.2024.130275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400046X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanco, Elena C. & Sánchez, Antonio & Martín, Mariano & Vega, Pastora, 2023. "Methanol and ammonia as emerging green fuels: Evaluation of a new power generation paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    3. Guteša Božo, M. & Vigueras-Zuniga, MO. & Buffi, M. & Seljak, T. & Valera-Medina, A., 2019. "Fuel rich ammonia-hydrogen injection for humidified gas turbines," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Descamps, C. & Bouallou, C. & Kanniche, M., 2008. "Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal," Energy, Elsevier, vol. 33(6), pages 874-881.
    5. Marco Osvaldo Vigueras-Zúñiga & Maria Elena Tejeda-del-Cueto & Syed Mashruk & Marina Kovaleva & Cesar Leonardo Ordóñez-Romero & Agustin Valera-Medina, 2021. "Methane/Ammonia Radical Formation during High Temperature Reactions in Swirl Burners," Energies, MDPI, vol. 14(20), pages 1-13, October.
    6. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    7. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    8. Sovacool, Benjamin K. & Griffiths, Steve, 2020. "The cultural barriers to a low-carbon future: A review of six mobility and energy transitions across 28 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Xiaowei Xu & Enlong Liu & Neng Zhu & Fanfu Liu & Feng Qian, 2022. "Review of the Current Status of Ammonia-Blended Hydrogen Fuel Engine Development," Energies, MDPI, vol. 15(3), pages 1-19, January.
    10. Mashruk, Syed & Kovaleva, Marina & Alnasif, Ali & Chong, Cheng Tung & Hayakawa, Akihiro & Okafor, Ekenechukwu C. & Valera-Medina, Agustin, 2022. "Nitrogen oxide emissions analyses in ammonia/hydrogen/air premixed swirling flames," Energy, Elsevier, vol. 260(C).
    11. Poran, Arnon & Tartakovsky, Leonid, 2015. "Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming," Energy, Elsevier, vol. 88(C), pages 506-514.
    12. Pashchenko, Dmitry, 2021. "Industrial furnaces with thermochemical waste-heat recuperation by coal gasification," Energy, Elsevier, vol. 221(C).
    13. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    14. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
    16. Su, Bosheng & Huang, Yupeng & Wang, Yilin & Huang, Zhi & Yuan, Shuo & Huang, Qiteng & Xu, Zhilong & Lin, Feng, 2023. "Novel ammonia-driven chemically recuperated gas turbine cycle based on dual fuel mode," Applied Energy, Elsevier, vol. 343(C).
    17. Rui Ao & Ruihua Lu & Guanghui Leng & Youran Zhu & Fuwu Yan & Qinghua Yu, 2023. "A Review on Numerical Simulation of Hydrogen Production from Ammonia Decomposition," Energies, MDPI, vol. 16(2), pages 1-24, January.
    18. Ayaz, S.Kagan & Altuntas, Onder & Caliskan, Hakan, 2021. "Enhanced life cycle modelling of a micro gas turbine fuelled with various fuels for sustainable electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    20. Popov, S.K. & Svistunov, I.N. & Garyaev, A.B. & Serikov, E.A. & Temyrkanova, E.K., 2017. "The use of thermochemical recuperation in an industrial plant," Energy, Elsevier, vol. 127(C), pages 44-51.
    21. Oh, Tick Hui, 2010. "Carbon capture and storage potential in coal-fired plant in Malaysia--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2697-2709, December.
    22. Christou, Costas & Hadjipaschalis, Ioannis & Poullikkas, Andreas, 2008. "Assessment of integrated gasification combined cycle technology competitiveness," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2459-2471, December.
    23. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    24. Clark, Richard & Zucker, Noah & Urpelainen, Johannes, 2020. "The future of coal-fired power generation in Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    25. Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
    26. Shuai, Jing & Zhao, Yujia & Wang, Yilan & Cheng, Jinhua, 2022. "Renewable energy product competitiveness: Evidence from the United States, China and India," Energy, Elsevier, vol. 249(C).
    27. Valera-Medina, Agustin & Marsh, Richard & Runyon, Jon & Pugh, Daniel & Beasley, Paul & Hughes, Timothy & Bowen, Phil, 2017. "Ammonia–methane combustion in tangential swirl burners for gas turbine power generation," Applied Energy, Elsevier, vol. 185(P2), pages 1362-1371.
    28. Strube, R. & Pellegrini, G. & Manfrida, G., 2011. "The environmental impact of post-combustion CO2 capture with MEA, with aqueous ammonia, and with an aqueous ammonia-ethanol mixture for a coal-fired power plant," Energy, Elsevier, vol. 36(6), pages 3763-3770.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun & Wang, Tianwei, 2024. "Comparison of different hydrogen-ammonia energy conversion pathways for renewable energy supply," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pashchenko, Dmitry, 2022. "Natural gas reforming in thermochemical waste-heat recuperation systems: A review," Energy, Elsevier, vol. 251(C).
    2. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Mustafa Alnaeli & Mohammad Alnajideen & Rukshan Navaratne & Hao Shi & Pawel Czyzewski & Ping Wang & Sven Eckart & Ali Alsaegh & Ali Alnasif & Syed Mashruk & Agustin Valera Medina & Philip John Bowen, 2023. "High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review," Energies, MDPI, vol. 16(19), pages 1-46, October.
    4. Pashchenko, Dmitry, 2019. "Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation," Energy, Elsevier, vol. 166(C), pages 462-470.
    5. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
    6. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Thermochemical recuperation by steam methane reforming as an efficient alternative to steam injection in the gas turbines," Energy, Elsevier, vol. 258(C).
    7. Pashchenko, Dmitry, 2020. "A heat recovery rate of the thermochemical waste-heat recuperation systems based on experimental prediction," Energy, Elsevier, vol. 198(C).
    8. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    9. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    10. Pashchenko, Dmitry & Karpilov, Igor & Polyakov, Mikhail & Popov, Stanislav K., 2024. "Techno-economic evaluation of a thermochemical waste-heat recuperation system for industrial furnace application: Operating cost analysis," Energy, Elsevier, vol. 295(C).
    11. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    12. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
    13. Skabelund, Brent B. & Stechel, Ellen B. & Milcarek, Ryan J., 2023. "Thermodynamic analysis of a gas turbine utilizing ternary CH4/H2/NH3 fuel blends," Energy, Elsevier, vol. 282(C).
    14. Milana Guteša Božo & Agustin Valera-Medina, 2020. "Prediction of Novel Humified Gas Turbine Cycle Parameters for Ammonia/Hydrogen Fuels," Energies, MDPI, vol. 13(21), pages 1-20, November.
    15. Yan, Beibei & Wu, Zhaoting & Zhou, Shengquan & Lv, Jingwen & Liu, Xiaoyun & Wu, Wenzhu & Chen, Guanyi, 2024. "A critical review of NH3–H2 combustion mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    16. Ju, Rongyuan & Wang, Jinhua & Zhang, Meng & Mu, Haibao & Zhang, Guanjun & Yu, Jinlu & Huang, Zuohua, 2023. "Stability and emission characteristics of ammonia/air premixed swirling flames with rotating gliding arc discharge plasma," Energy, Elsevier, vol. 277(C).
    17. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    18. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Vittorio Bonasio & Silvia Ravelli, 2022. "Performance Analysis of an Ammonia-Fueled Micro Gas Turbine," Energies, MDPI, vol. 15(11), pages 1-18, May.
    20. Cesaro, Zac & Ives, Matthew & Nayak-Luke, Richard & Mason, Mike & Bañares-Alcántara, René, 2021. "Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422400046x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.