IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v51y2013icp382-394.html
   My bibliography  Save this article

On the exergetic effectiveness of combined-cycle engines for high speed propulsion

Author

Listed:
  • Fernández-Villacé, Víctor
  • Paniagua, Guillermo

Abstract

Air-breathing engines are utilized in the hypersonic regime through thermal integration of the fuel into the propulsive cycle, which improves the efficiency by recovering thermal energy from the freestream and the aeroshell. The classical efficiency figures based on First Principle analyses are inaccurate performance indicators of the resulting combined cycle. Instead, this paper deduced the engine thermal and airframe transfer effectivenesses based on thermodynamic availability, related to the overall losses of the thermally integrated vehicle for a given mission. The engine overall effectiveness, derived from the propulsive efficiency and the engine thermal effectiveness, was found to be a generalization of the Bréguet equation. The developed methodology was demonstrated in a combined cycle engine operating at flight speeds from Mach 2.5 to 5. In particular, the propulsive efficiency, thermal effectiveness, total loss and subcomponent losses were evaluated using the common framework of thermodynamic availability.

Suggested Citation

  • Fernández-Villacé, Víctor & Paniagua, Guillermo, 2013. "On the exergetic effectiveness of combined-cycle engines for high speed propulsion," Energy, Elsevier, vol. 51(C), pages 382-394.
  • Handle: RePEc:eee:energy:v:51:y:2013:i:c:p:382-394
    DOI: 10.1016/j.energy.2012.11.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212009206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.11.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahrendts, Joachim, 1980. "Reference states," Energy, Elsevier, vol. 5(8), pages 666-677.
    2. Tona, Cesare & Raviolo, Paolo Antonio & Pellegrini, Luiz Felipe & de Oliveira Júnior, Silvio, 2010. "Exergy and thermoeconomic analysis of a turbofan engine during a typical commercial flight," Energy, Elsevier, vol. 35(2), pages 952-959.
    3. Amati, V. & Bruno, C. & Simone, D. & Sciubba, E., 2008. "Exergy analysis of hypersonic propulsion systems: Performance comparison of two different scramjet configurations at cruise conditions," Energy, Elsevier, vol. 33(2), pages 116-129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Wei & Huang, Chen & Zhao, Qingjun & Ma, Yingqun & Xu, Jianzhong, 2018. "Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles," Energy, Elsevier, vol. 154(C), pages 96-109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, H.Z., 2013. "Evaluation of the local exergy destruction in the intake and fan of a turbofan engine," Energy, Elsevier, vol. 63(C), pages 245-251.
    2. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    3. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    4. Akdeniz, Halil Yalcin, 2022. "Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints," Energy, Elsevier, vol. 243(C).
    5. Petrakopoulou, Fontina & Robinson, Alexander & Loizidou, Maria, 2016. "Simulation and evaluation of a hybrid concentrating-solar and wind power plant for energy autonomy on islands," Renewable Energy, Elsevier, vol. 96(PA), pages 863-871.
    6. Tang, Li & Liu, Wei & Liu, Yan-Jun, 2024. "Dual design of control law and switching law for turbofan systems under multiple disturbances," Energy, Elsevier, vol. 296(C).
    7. Kim, Sangjo & Son, Changmin & Kim, Kuisoon, 2017. "Combining effect of optimized axial compressor variable guide vanes and bleed air on the thermodynamic performance of aircraft engine system," Energy, Elsevier, vol. 119(C), pages 199-210.
    8. Ekici, Selcuk, 2020. "Investigating routes performance of flight profile generated based on the off-design point: Elaboration of commercial aircraft-engine pairing," Energy, Elsevier, vol. 193(C).
    9. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    10. Şöhret, Yasin & Dinç, Ali & Karakoç, T. Hikmet, 2015. "Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission," Energy, Elsevier, vol. 93(P1), pages 716-729.
    11. Yucer, Cem Tahsin, 2016. "Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method," Energy, Elsevier, vol. 111(C), pages 251-259.
    12. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    13. Valero, Alicia & Valero, Antonio & Vieillard, Philippe, 2012. "The thermodynamic properties of the upper continental crust: Exergy, Gibbs free energy and enthalpy," Energy, Elsevier, vol. 41(1), pages 121-127.
    14. Liu, Yunfeng & Han, Xin & Zhang, Zijian, 2024. "Study on the propulsive performance of oblique detonation engine," Energy, Elsevier, vol. 292(C).
    15. Kyrke Gaudreau & Roydon A. Fraser & Stephen Murphy, 2012. "The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making," Energies, MDPI, vol. 5(7), pages 1-17, July.
    16. Ruth, Matthias, 1995. "Information, order and knowledge in economic and ecological systems: implications for material and energy use," Ecological Economics, Elsevier, vol. 13(2), pages 99-114, May.
    17. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    18. Rašković, Predrag & Guzović, Zvonimir & Cvetković, Svetislav, 2013. "Performance analysis of electricity generation by the medium temperature geothermal resources: Velika Ciglena case study," Energy, Elsevier, vol. 54(C), pages 11-31.
    19. Saffari, Hamid & Sadeghi, Sadegh & Khoshzat, Mohsen & Mehregan, Pooyan, 2016. "Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm," Renewable Energy, Elsevier, vol. 89(C), pages 154-167.
    20. Ruth, Matthias, 1995. "Thermodynamic constraints on optimal depletion of copper and aluminum in the United States: a dynamic model of substitution and technical change," Ecological Economics, Elsevier, vol. 15(3), pages 197-213, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:51:y:2013:i:c:p:382-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.