IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v207y2023icp436-446.html
   My bibliography  Save this article

Radiative intensity regulation to match energy conversion on demand in solar methane dry reforming to improve solar to fuel conversion efficiency

Author

Listed:
  • Shi, Xuhang
  • Song, Jintao
  • Cheng, Ziming
  • Liang, Huaxu
  • Dong, Yan
  • Wang, Fuqiang
  • Zhang, Wenjing

Abstract

The mismatch between radiative intensity field and energy required for solar thermochemical reaction can cause serious heat waste and reduce energy conversion efficiency. To improve the energy conversion efficiency of solar to fuel, the radiative intensity regulation method to match energy conversion on demand in solar methane dry reforming is proposed in this study. The design of solar spots and biomimetic leaf hierarchical porous structures is investigated and optimized, which can realize a better radiative intensity field matching. The experimental and numerical studies show that, by using the method of regulating radiative intensity field to match energy conversion on-demand in solar thermochemical reactor, the methane conversion rate and solar thermochemical energy storage efficiency can be increased by 4.6% and 6.1%, respectively. The ideal synergy between real temperature field distribution and theoretical temperature requirement is perfectly achieved.

Suggested Citation

  • Shi, Xuhang & Song, Jintao & Cheng, Ziming & Liang, Huaxu & Dong, Yan & Wang, Fuqiang & Zhang, Wenjing, 2023. "Radiative intensity regulation to match energy conversion on demand in solar methane dry reforming to improve solar to fuel conversion efficiency," Renewable Energy, Elsevier, vol. 207(C), pages 436-446.
  • Handle: RePEc:eee:renene:v:207:y:2023:i:c:p:436-446
    DOI: 10.1016/j.renene.2023.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruan, Zhao-Hui & Gao, Peng & Yuan, Yuan & Tan, He-Ping, 2022. "Theoretical estimation of temperature-dependent radiation properties of molten solar salt using molecular dynamics and first principles," Energy, Elsevier, vol. 246(C).
    2. Liu, Xianglei & Cheng, Bo & Zhu, Qibin & Gao, Ke & Sun, Nan & Tian, Cheng & Wang, Jiaqi & Zheng, Hangbin & Wang, Xinrui & Dang, Chunzhuo & Xuan, Yimin, 2022. "Highly efficient solar-driven CO2 reforming of methane via concave foam reactors," Energy, Elsevier, vol. 261(PB).
    3. Liu, Yun & Xie, Ling-tian & Shen, Wen-ran & Xu, Chao & Zhao, Bo-yang, 2023. "Relative flow direction modes and gradual porous parameters for radiation transport and interactions with thermochemical reaction in porous volumetric solar reactor," Renewable Energy, Elsevier, vol. 203(C), pages 612-621.
    4. Tang, Xin-Yuan & Zhang, Kai-Ran & Yang, Wei-Wei & Dou, Pei-Yuan, 2023. "Integrated design of solar concentrator and thermochemical reactor guided by optimal solar radiation distribution," Energy, Elsevier, vol. 263(PB).
    5. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Multi-objective optimization of a solar driven trigeneration system," Energy, Elsevier, vol. 149(C), pages 47-62.
    6. Chen, Xue & Wang, Fuqiang & Yan, Xuewei & Han, Yafen & Cheng, Ziming & Jie, Zhu, 2018. "Thermochemical performance of solar driven CO2 reforming of methane in volumetric reactor with gradual foam structure," Energy, Elsevier, vol. 151(C), pages 545-555.
    7. Remo Schäppi & David Rutz & Fabian Dähler & Alexander Muroyama & Philipp Haueter & Johan Lilliestam & Anthony Patt & Philipp Furler & Aldo Steinfeld, 2022. "Drop-in fuels from sunlight and air," Nature, Nature, vol. 601(7891), pages 63-68, January.
    8. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    9. Jin, Jian & Wei, Xin & Liu, Mingkai & Yu, Yuhang & Li, Wenjia & Kong, Hui & Hao, Yong, 2018. "A solar methane reforming reactor design with enhanced efficiency," Applied Energy, Elsevier, vol. 226(C), pages 797-807.
    10. Lu, Jianfeng & Chen, Yuan & Ding, Jing & Wang, Weilong, 2016. "High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor," Applied Energy, Elsevier, vol. 162(C), pages 1473-1482.
    11. Lu, J.F. & Dong, Y.X. & Wang, Y.R. & Wang, W.L. & Ding, J., 2022. "High efficient thermochemical energy storage of methane reforming with carbon dioxide in cavity reactor with novel catalyst bed under concentrated sun simulator," Renewable Energy, Elsevier, vol. 188(C), pages 361-371.
    12. Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Wang, Fuqiang & Cheng, Ziming & Tan, Heping, 2020. "Effects of multilayer porous ceramics on thermochemical energy conversion and storage efficiency in solar dry reforming of methane reactor," Applied Energy, Elsevier, vol. 265(C).
    13. Dong, Yan & Wang, Fuqiang & Zhang, Yaqi & Shi, Xuhang & Zhang, Aoyu & Shuai, Yong, 2022. "Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Jintao & Fan, Yaping & Cheng, Ziming & Wang, Fuqiang & Shi, Xuhang & Yi, Hongliang & Zhang, Aoyu & Dong, Yan, 2023. "Thermodynamic analysis of an air liquid energy storage system coupling Rankine cycle and methane steam reforming to improve system electrical conversion and energy efficiency," Renewable Energy, Elsevier, vol. 219(P2).
    2. Yao, Haichen & Liu, Xianglei & Li, Jiawei & Luo, Qingyang & Tian, Yang & Xuan, Yimin, 2023. "Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system," Energy, Elsevier, vol. 284(C).
    3. Chen, Xudong & Li, Chunzhe & Yang, Zhenning & Dong, Yan & Wang, Fuqiang & Cheng, Ziming & Yang, Chun, 2024. "Golf-ball-inspired phase change material capsule: Experimental and numerical simulation analysis of flow characteristics and thermal performance," Energy, Elsevier, vol. 293(C).
    4. Shi, Yueyue & Liu, Yongqi & Zhou, Yuqi & Shi, Junrui & Qi, Xiaoni & Mao, Mingming, 2023. "Study in mitigation of lean methane and stable heat recovery via embedded heat exchanger tubes in the regenerative monolith bed," Renewable Energy, Elsevier, vol. 218(C).
    5. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).
    2. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    3. Yang, Wei-Wei & Tang, Xin-Yuan & Ma, Xu & Li, Jia-Chen & Xu, Chao & He, Ya-Ling, 2023. "Rapid prediction, optimization and design of solar membrane reactor by data-driven surrogate model," Energy, Elsevier, vol. 285(C).
    4. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    5. Liu, Xianglei & Cheng, Bo & Zhu, Qibin & Gao, Ke & Sun, Nan & Tian, Cheng & Wang, Jiaqi & Zheng, Hangbin & Wang, Xinrui & Dang, Chunzhuo & Xuan, Yimin, 2022. "Highly efficient solar-driven CO2 reforming of methane via concave foam reactors," Energy, Elsevier, vol. 261(PB).
    6. Chen, Chen & Kong, Mingmin & Zhou, Shuiqing & Sepulveda, Abdon E. & Hong, Hui, 2020. "Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage☆," Applied Energy, Elsevier, vol. 266(C).
    7. Guene Lougou, Bachirou & Wu, Lianxuan & Ma, Danni & Geng, Boxi & Jiang, Boshu & Han, Donmei & Zhang, Hao & Łapka, Piotr & Shuai, Yong, 2023. "Efficient conversion of solar energy through a macroporous ceramic receiver coupling heat transfer and thermochemical reactions," Energy, Elsevier, vol. 271(C).
    8. Wu, Haifeng & Liu, Qibin & Xie, Gengxin & Guo, Shaopeng & Zheng, Jie & Su, Bosheng, 2020. "Performance investigation of a novel hybrid combined cooling, heating and power system with solar thermochemistry in different climate zones," Energy, Elsevier, vol. 190(C).
    9. Chen, Qiang & Dong, Yixuan & Ding, Jing & Wang, Weilong & Lu, Jianfeng, 2024. "Thermochemical energy storage analysis of solar driven carbon dioxide reforming of methane in SiC-foam cavity reactor," Renewable Energy, Elsevier, vol. 224(C).
    10. Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Yang, Dazhi & Pan, Qinghui & Wang, Fuqiang & Huang, Xing, 2022. "Effects of foam structure on thermochemical characteristics of porous-filled solar reactor," Energy, Elsevier, vol. 239(PC).
    11. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Dong, Yan & Wang, Fuqiang & Zhang, Yaqi & Shi, Xuhang & Zhang, Aoyu & Shuai, Yong, 2022. "Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure," Energy, Elsevier, vol. 238(PB).
    13. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
    14. Wang, Fuqiang & Shi, Xuhang & Zhang, Chuanxin & Cheng, Ziming & Chen, Xue, 2020. "Effects of non-uniform porosity on thermochemical performance of solar driven methane reforming," Energy, Elsevier, vol. 191(C).
    15. Tang, Xin-Yuan & Yang, Wei-Wei & Ma, Xu & He, Ya-Ling, 2024. "Bionic leaf-inspired catalyst bed structure for solar membrane reactor aiming at efficient hydrogen production and separation," Applied Energy, Elsevier, vol. 355(C).
    16. Chen, Xue & Lyu, Jinxin & Sun, Chuang & Xia, Xinlin & Wang, Fuqiang, 2023. "Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies," Energy, Elsevier, vol. 278(PB).
    17. Mortadi, M. & El Fadar, A. & Achkari Begdouri, O., 2024. "4E analysis of photovoltaic thermal collector-based tri-generation system with adsorption cooling: Annual simulation under Moroccan climate conditions," Renewable Energy, Elsevier, vol. 221(C).
    18. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    19. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    20. Lu, J.F. & Dong, Y.X. & Wang, Y.R. & Wang, W.L. & Ding, J., 2022. "High efficient thermochemical energy storage of methane reforming with carbon dioxide in cavity reactor with novel catalyst bed under concentrated sun simulator," Renewable Energy, Elsevier, vol. 188(C), pages 361-371.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:207:y:2023:i:c:p:436-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.