IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v101y2016icp343-358.html
   My bibliography  Save this article

Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources

Author

Listed:
  • Fitiwi, Desta Z.
  • Olmos, L.
  • Rivier, M.
  • de Cuadra, F.
  • Pérez-Arriaga, I.J.

Abstract

The global drive for integration of RESs (renewable energy sources) means that TEP (transmission expansion planning) has to be carried out over geographically wide and large-scale networks under high levels of uncertainty. This leads to complex combinatorial TEP optimization problems, requiring a huge amount of OPF (optimal power flow) computations. The algorithm employed to calculate the OPF must be reasonably accurate but computationally very efficient, because it has to be run for a lot of operational conditions. Overly simplified OPF formulations are not adequate, since they neglect aspects which play a relevant role in TEP. Specifically, network losses significantly influence TEP solutions, but they are often disregarded due to their computational burden. Given their potential impact on the optimal TEP solution, the main focus of this paper is to find an appropriate losses model in the context of medium to long-term TEP for large-scale power systems. Keeping the balance between accuracy and computation time is essential in such problems. The paper presents two alternative linear losses models, as well as two variants of existing ones. These models are compared and tested using case studies, including small, medium and large-scale networks. Practical conclusions and recommendations are drawn from numerical results.

Suggested Citation

  • Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
  • Handle: RePEc:eee:energy:v:101:y:2016:i:c:p:343-358
    DOI: 10.1016/j.energy.2016.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216300573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    2. Mohammadi-ivatloo, Behnam & Rabiee, Abbas & Soroudi, Alireza & Ehsan, Mehdi, 2012. "Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch," Energy, Elsevier, vol. 44(1), pages 228-240.
    3. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    4. Li, Y.Z. & Wu, Q.H. & Li, M.S. & Zhan, J.P., 2014. "Mean-variance model for power system economic dispatch with wind power integrated," Energy, Elsevier, vol. 72(C), pages 510-520.
    5. Arul, R. & Velusami, S. & Ravi, G., 2015. "A new algorithm for combined dynamic economic emission dispatch with security constraints," Energy, Elsevier, vol. 79(C), pages 496-511.
    6. Liao, Gwo-Ching, 2011. "A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power," Energy, Elsevier, vol. 36(2), pages 1018-1029.
    7. Modiri-Delshad, Mostafa & Rahim, Nasrudin Abd, 2014. "Solving non-convex economic dispatch problem via backtracking search algorithm," Energy, Elsevier, vol. 77(C), pages 372-381.
    8. Pereira, Adelino J.C. & Saraiva, João Tomé, 2011. "Generation expansion planning (GEP) – A long-term approach using system dynamics and genetic algorithms (GAs)," Energy, Elsevier, vol. 36(8), pages 5180-5199.
    9. Salgado, R.S. & Rangel, E.L., 2012. "Optimal power flow solutions through multi-objective programming," Energy, Elsevier, vol. 42(1), pages 35-45.
    10. Chamorro, José M. & Abadie, Luis M. & de Neufville, Richard & Ilić, Marija, 2012. "Market-based valuation of transmission network expansion. A heuristic application in GB," Energy, Elsevier, vol. 44(1), pages 302-320.
    11. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    12. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer," Energy, Elsevier, vol. 81(C), pages 245-254.
    13. Younes, Mimoun & Khodja, Fouad & Kherfane, Riad Lakhdar, 2014. "Multi-objective economic emission dispatch solution using hybrid FFA (firefly algorithm) and considering wind power penetration," Energy, Elsevier, vol. 67(C), pages 595-606.
    14. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Roosta, Alireza & Malekpour, Ahmad Reza & Zare, Mohsen, 2012. "Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method," Energy, Elsevier, vol. 37(1), pages 322-335.
    15. Sadegheih, A., 2009. "Optimization of network planning by the novel hybrid algorithms of intelligent optimization techniques," Energy, Elsevier, vol. 34(10), pages 1539-1551.
    16. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    17. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    18. Ghasemi, Mojtaba & Ghavidel, Sahand & Akbari, Ebrahim & Vahed, Ali Azizi, 2014. "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos," Energy, Elsevier, vol. 73(C), pages 340-353.
    19. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.
    20. Lin, Shin-Yeu & Chen, Jyun-Fu, 2013. "Distributed optimal power flow for smart grid transmission system with renewable energy sources," Energy, Elsevier, vol. 56(C), pages 184-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zolfaghari, Saeed & Akbari, Tohid, 2018. "Bilevel transmission expansion planning using second-order cone programming considering wind investment," Energy, Elsevier, vol. 154(C), pages 455-465.
    2. Sarid, A. & Tzur, M., 2018. "The multi-scale generation and transmission expansion model," Energy, Elsevier, vol. 148(C), pages 977-991.
    3. Yang, Zhifang & Zhong, Haiwang & Lin, Wei & Lin, Jeremy & Chen, Yonghong & Xia, Qing & Liu, Wentao & Zhang, Xuan, 2019. "Mapping between transmission constraint penalty factor and OPF solution in electricity markets: analysis and fast calculation," Energy, Elsevier, vol. 168(C), pages 1181-1191.
    4. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "Is the Korean public willing to pay for a decentralized generation source? The case of natural gas-based combined heat and power," Energy Policy, Elsevier, vol. 102(C), pages 125-131.
    5. Santos, Sérgio F. & Fitiwi, Desta Z. & Cruz, Marco R.M. & Cabrita, Carlos M.P. & Catalão, João P.S., 2017. "Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems," Applied Energy, Elsevier, vol. 185(P1), pages 44-55.
    6. Mo, Huadong & Sansavini, Giovanni, 2019. "Impact of aging and performance degradation on the operational costs of distributed generation systems," Renewable Energy, Elsevier, vol. 143(C), pages 426-439.
    7. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Enhanced network effects and stochastic modelling in generation expansion planning: Insights from an insular power system," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    8. Neumann, Fabian & Hagenmeyer, Veit & Brown, Tom, 2022. "Assessments of linear power flow and transmission loss approximations in coordinated capacity expansion problems," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    2. Ghasemi, Mojtaba & Ghavidel, Sahand & Akbari, Ebrahim & Vahed, Ali Azizi, 2014. "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos," Energy, Elsevier, vol. 73(C), pages 340-353.
    3. Zaman, Forhad & Elsayed, Saber M. & Ray, Tapabrata & Sarker, Ruhul A., 2016. "Evolutionary algorithms for power generation planning with uncertain renewable energy," Energy, Elsevier, vol. 112(C), pages 408-419.
    4. Zhang, Jingrui & Wang, Silu & Tang, Qinghui & Zhou, Yulu & Zeng, Tao, 2019. "An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems," Energy, Elsevier, vol. 172(C), pages 945-957.
    5. Chen, Fang & Zhou, Jianzhong & Wang, Chao & Li, Chunlong & Lu, Peng, 2017. "A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching," Energy, Elsevier, vol. 121(C), pages 276-291.
    6. Lin, Shin-Yeu & Chen, Jyun-Fu, 2013. "Distributed optimal power flow for smart grid transmission system with renewable energy sources," Energy, Elsevier, vol. 56(C), pages 184-192.
    7. Fitiwi, Desta Z. & de Cuadra, F. & Olmos, L. & Rivier, M., 2015. "A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty," Energy, Elsevier, vol. 90(P2), pages 1360-1376.
    8. Lin, Shin-Yeu & Lin, Ai-Chih, 2014. "RLOPF (risk-limiting optimal power flow) for systems with high penetration of wind power," Energy, Elsevier, vol. 71(C), pages 49-61.
    9. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    10. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    11. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    12. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Bina, Mohammad Amin & Zare, Mohsen, 2015. "Coordination of combined heat and power-thermal-wind-photovoltaic units in economic load dispatch using chance-constrained and jointly distributed random variables methods," Energy, Elsevier, vol. 79(C), pages 50-67.
    13. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    14. Li, Shuijia & Gong, Wenyin & Hu, Chengyu & Yan, Xuesong & Wang, Ling & Gu, Qiong, 2021. "Adaptive constraint differential evolution for optimal power flow," Energy, Elsevier, vol. 235(C).
    15. Rahmani, Shima & Amjady, Nima, 2017. "A new optimal power flow approach for wind energy integrated power systems," Energy, Elsevier, vol. 134(C), pages 349-359.
    16. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    17. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2015. "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch," Renewable Energy, Elsevier, vol. 83(C), pages 188-202.
    18. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    19. Younes, Mimoun & Khodja, Fouad & Kherfane, Riad Lakhdar, 2014. "Multi-objective economic emission dispatch solution using hybrid FFA (firefly algorithm) and considering wind power penetration," Energy, Elsevier, vol. 67(C), pages 595-606.
    20. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:101:y:2016:i:c:p:343-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.