IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1692-d155091.html
   My bibliography  Save this article

Solving Non-Smooth Optimal Power Flow Problems Using a Developed Grey Wolf Optimizer

Author

Listed:
  • Mostafa Abdo

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Salah Kamel

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
    State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400030, China)

  • Mohamed Ebeed

    (Department of Electrical Engineering, Faculty of Engineering, Sohag University, Sohag 82524, Egypt)

  • Juan Yu

    (State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400030, China)

  • Francisco Jurado

    (Department of Electrical Engineering, University of Jaén, EPS Linares, 23700 Jaén, Spain)

Abstract

The optimal power flow (OPF) problem is a non-linear and non-smooth optimization problem. OPF problem is a complicated optimization problem, especially when considering the system constraints. This paper proposes a new enhanced version for the grey wolf optimization technique called Developed Grey Wolf Optimizer (DGWO) to solve the optimal power flow (OPF) problem by an efficient way. Although the GWO is an efficient technique, it may be prone to stagnate at local optima for some cases due to the insufficient diversity of wolves, hence the DGWO algorithm is proposed for improving the search capabilities of this optimizer. The DGWO is based on enhancing the exploration process by applying a random mutation to increase the diversity of population, while an exploitation process is enhanced by updating the position of populations in spiral path around the best solution. An adaptive operator is employed in DGWO to find a balance between the exploration and exploitation phases during the iterative process. The considered objective functions are quadratic fuel cost minimization, piecewise quadratic cost minimization, and quadratic fuel cost minimization considering the valve point effect. The DGWO is validated using the standard IEEE 30-bus test system. The obtained results showed the effectiveness and superiority of DGWO for solving the OPF problem compared with the other well-known meta-heuristic techniques.

Suggested Citation

  • Mostafa Abdo & Salah Kamel & Mohamed Ebeed & Juan Yu & Francisco Jurado, 2018. "Solving Non-Smooth Optimal Power Flow Problems Using a Developed Grey Wolf Optimizer," Energies, MDPI, vol. 11(7), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1692-:d:155091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azizivahed, Ali & Narimani, Hossein & Fathi, Mehdi & Naderi, Ehsan & Safarpour, Hamid Reza & Narimani, Mohammad Rasoul, 2018. "Multi-objective dynamic distribution feeder reconfiguration in automated distribution systems," Energy, Elsevier, vol. 147(C), pages 896-914.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajakumar, R. & Sekaran, Kaushik & Hsu, Ching-Hsien & Kadry, Seifedine, 2021. "Accelerated grey wolf optimization for global optimization problems," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    2. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    3. Mohamed H. Hassan & Salah Kamel & Ali Selim & Tahir Khurshaid & José Luis Domínguez-García, 2021. "A Modified Rao-2 Algorithm for Optimal Power Flow Incorporating Renewable Energy Sources," Mathematics, MDPI, vol. 9(13), pages 1-22, June.
    4. Abdullah Shaheen & Ahmed Ginidi & Ragab El-Sehiemy & Abdallah Elsayed & Ehab Elattar & Hassen T. Dorrah, 2022. "Developed Gorilla Troops Technique for Optimal Power Flow Problem in Electrical Power Systems," Mathematics, MDPI, vol. 10(10), pages 1-29, May.
    5. Shahenda Sarhan & Abdullah Mohamed Shaheen & Ragab A. El-Sehiemy & Mona Gafar, 2022. "An Enhanced Slime Mould Optimizer That Uses Chaotic Behavior and an Elitist Group for Solving Engineering Problems," Mathematics, MDPI, vol. 10(12), pages 1-30, June.
    6. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.
    7. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad-Farsani, Ehsan & Sardou, Iman Goroohi & Abedini, Saeed, 2021. "Distribution Network Reconfiguration based on LMP at DG connected busses using game theory and self-adaptive FWA," Energy, Elsevier, vol. 215(PB).
    2. Li, J.Y. & Chen, J.J. & Wang, Y.X. & Chen, W.G., 2024. "Combining multi-step reconfiguration with many-objective reduction as iterative bi-level scheduling for stochastic distribution network," Energy, Elsevier, vol. 290(C).
    3. Bo Li & Panpan Zhang & Xiangjun Li & Shengxian Cao, 2019. "Distributed Absorption and Half-Search Approach for Economic Dispatch Problem in Smart Grids," Energies, MDPI, vol. 12(8), pages 1-21, April.
    4. Narimani, Hossein & Razavi, Seyed-Ehsan & Azizivahed, Ali & Naderi, Ehsan & Fathi, Mehdi & Ataei, Mohammad H. & Narimani, Mohammad Rasoul, 2018. "A multi-objective framework for multi-area economic emission dispatch," Energy, Elsevier, vol. 154(C), pages 126-142.
    5. Wang, Hong-Jiang & Pan, Jeng-Shyang & Nguyen, Trong-The & Weng, Shaowei, 2022. "Distribution network reconfiguration with distributed generation based on parallel slime mould algorithm," Energy, Elsevier, vol. 244(PB).
    6. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
    7. Tolabi, H.B. & Ara, A. Lashkar & Hosseini, R., 2020. "A new thief and police algorithm and its application in simultaneous reconfiguration with optimal allocation of capacitor and distributed generation units," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1692-:d:155091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.