IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v94y2016icp786-798.html
   My bibliography  Save this article

An aggregated model for coordinated planning and reconfiguration of electric distribution networks

Author

Listed:
  • Arasteh, Hamidreza
  • Sepasian, Mohammad Sadegh
  • Vahidinasab, Vahid

Abstract

This paper proposes a coordinated distribution system reconfiguration and planning model to deal with the problem of active distribution expansion planning. DR (Demand response) programs are modeled as virtual distributed resources to cover the effect of uncertain parameters. A bi-level optimization procedure is developed to solve the proposed model. At the first level, an optimization problem is solved using PSO (particle swarm optimization) algorithm to determine the system expansion and reconfiguration plans. Next, the second level minimization problem is developed based on the sensitivity analysis. The DR programs are taken into account in the second level problem to encounter with the problem uncertainties. Therefore, the proposed model incorporates the problem of DSR (distribution system reconfiguration) with system expansion problem, while the presence of DR is considered to enhance the effectiveness of the problem. The IEEE 33-bus standard test system is utilized to investigate the performance of the proposed model. The simulation results approve the advantages of the proposed model and its economical profits for distribution network owners.

Suggested Citation

  • Arasteh, Hamidreza & Sepasian, Mohammad Sadegh & Vahidinasab, Vahid, 2016. "An aggregated model for coordinated planning and reconfiguration of electric distribution networks," Energy, Elsevier, vol. 94(C), pages 786-798.
  • Handle: RePEc:eee:energy:v:94:y:2016:i:c:p:786-798
    DOI: 10.1016/j.energy.2015.11.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.11.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbasi, Ali Reza & Seifi, Ali Reza, 2015. "Considering cost and reliability in electrical and thermal distribution networks reinforcement planning," Energy, Elsevier, vol. 84(C), pages 25-35.
    2. Soroudi, Alireza, 2013. "Robust optimization based self scheduling of hydro-thermal Genco in smart grids," Energy, Elsevier, vol. 61(C), pages 262-271.
    3. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    4. Tolabi, Hajar Bagheri & Ali, Mohd Hasan & Shahrin Bin Md Ayob, & Rizwan, M., 2014. "Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation," Energy, Elsevier, vol. 71(C), pages 507-515.
    5. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    6. Esmaeeli, M. & Kazemi, A. & Shayanfar, H.A. & Haghifam, M.-R., 2015. "Multistage distribution substations planning considering reliability and growth of energy demand," Energy, Elsevier, vol. 84(C), pages 357-364.
    7. Aghaei, Jamshid & Muttaqi, Kashem M. & Azizivahed, Ali & Gitizadeh, Mohsen, 2014. "Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm," Energy, Elsevier, vol. 65(C), pages 398-411.
    8. Stoppato, Anna & Cavazzini, Giovanna & Ardizzon, Guido & Rossetti, Antonio, 2014. "A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area," Energy, Elsevier, vol. 76(C), pages 168-174.
    9. Ji, L. & Niu, D.X. & Huang, G.H., 2014. "An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand," Energy, Elsevier, vol. 67(C), pages 186-199.
    10. Sedighizadeh, Mostafa & Esmaili, Masoud & Esmaeili, Mobin, 2014. "Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems," Energy, Elsevier, vol. 76(C), pages 920-930.
    11. Dashti, Reza & Yousefi, Shaghayegh & Parsa Moghaddam, Mohsen, 2013. "Comprehensive efficiency evaluation model for electrical distribution system considering social and urban factors," Energy, Elsevier, vol. 60(C), pages 53-61.
    12. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    13. Wang, Q. & Poh, K.L., 2014. "A survey of integrated decision analysis in energy and environmental modeling," Energy, Elsevier, vol. 77(C), pages 691-702.
    14. Kim, Jin-Ho & Shcherbakova, Anastasia, 2011. "Common failures of demand response," Energy, Elsevier, vol. 36(2), pages 873-880.
    15. Kwag, Hyung-Geun & Kim, Jin-O, 2012. "Optimal combined scheduling of generation and demand response with demand resource constraints," Applied Energy, Elsevier, vol. 96(C), pages 161-170.
    16. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahiminejad, A. & Vahidi, B. & Hejazi, M.A. & Shahrooyan, S., 2016. "Optimal scheduling of dispatchable distributed generation in smart environment with the aim of energy loss minimization," Energy, Elsevier, vol. 116(P1), pages 190-201.
    2. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Dong Ryeol Shin, 2017. "Multi-Objective Planning Techniques in Distribution Networks: A Composite Review," Energies, MDPI, vol. 10(2), pages 1-44, February.
    4. Azizivahed, Ali & Narimani, Hossein & Fathi, Mehdi & Naderi, Ehsan & Safarpour, Hamid Reza & Narimani, Mohammad Rasoul, 2018. "Multi-objective dynamic distribution feeder reconfiguration in automated distribution systems," Energy, Elsevier, vol. 147(C), pages 896-914.
    5. Monadi, Mehdi & Zamani, M. Amin & Koch-Ciobotaru, Cosmin & Candela, Jose Ignacio & Rodriguez, Pedro, 2016. "A communication-assisted protection scheme for direct-current distribution networks," Energy, Elsevier, vol. 109(C), pages 578-591.
    6. Zixiao Ban & Fei Teng & Huifeng Zhang & Shuo Li & Geyang Xiao & Yajuan Guan, 2023. "Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    7. Kavousi-Fard, Abdollah & Khodaei, Amin, 2016. "Efficient integration of plug-in electric vehicles via reconfigurable microgrids," Energy, Elsevier, vol. 111(C), pages 653-663.
    8. Liu, Yuan & He, Li & Shen, Jing, 2017. "Optimization-based provincial hybrid renewable and non-renewable energy planning – A case study of Shanxi, China," Energy, Elsevier, vol. 128(C), pages 839-856.
    9. Moradijoz, M. & Moghaddam, M. Parsa & Haghifam, M.R., 2018. "A flexible active distribution system expansion planning model: A risk-based approach," Energy, Elsevier, vol. 145(C), pages 442-457.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    2. Kia, M. & Shafiekhani, M. & Arasteh, H. & Hashemi, S.M. & Shafie-khah, M. & Catalão, J.P.S., 2020. "Short-term operation of microgrids with thermal and electrical loads under different uncertainties using information gap decision theory," Energy, Elsevier, vol. 208(C).
    3. Esmaeeli, Mostafa & Kazemi, Ahad & Shayanfar, Heidarali & Chicco, Gianfranco & Siano, Pierluigi, 2017. "Risk-based planning of the distribution network structure considering uncertainties in demand and cost of energy," Energy, Elsevier, vol. 119(C), pages 578-587.
    4. Neda Hajibandeh & Miadreza Shafie-khah & Sobhan Badakhshan & Jamshid Aghaei & Sílvio J. P. S. Mariano & João P. S. Catalão, 2019. "Multi-Objective Market Clearing Model with an Autonomous Demand Response Scheme," Energies, MDPI, vol. 12(7), pages 1-16, April.
    5. Seungmi Lee & Jinho Kim, 2018. "Analytical Assessment for System Peak Reduction by Demand Responsive Resources Considering Their Operational Constraints in Wholesale Electricity Market," Energies, MDPI, vol. 11(12), pages 1-15, November.
    6. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Eissa, M.M., 2019. "Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol," Applied Energy, Elsevier, vol. 236(C), pages 273-292.
    9. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    10. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    11. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    12. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    13. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, vol. 10(9), pages 1-18, September.
    14. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
    16. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2015. "Performance evaluation of power demand scheduling scenarios in a smart grid environment," Applied Energy, Elsevier, vol. 142(C), pages 164-178.
    17. Sheikhahmadi, P. & Bahramara, S. & Moshtagh, J. & Yazdani Damavandi, M., 2018. "A risk-based approach for modeling the strategic behavior of a distribution company in wholesale energy market," Applied Energy, Elsevier, vol. 214(C), pages 24-38.
    18. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    19. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    20. Chris Johnathon & Ashish Prakash Agalgaonkar & Joel Kennedy & Chayne Planiden, 2021. "Analyzing Electricity Markets with Increasing Penetration of Large-Scale Renewable Power Generation," Energies, MDPI, vol. 14(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:94:y:2016:i:c:p:786-798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.