IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5604-d878403.html
   My bibliography  Save this article

Solar-Driven Sorption System for Seasonal Heat Storage under Optimal Control: Study for Different Climatic Zones

Author

Listed:
  • Alicia Crespo

    (GREiA Research Group, University of Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Cèsar Fernández

    (GREiA Research Group, University of Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Alvaro de Gracia

    (IT4S Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Andrea Frazzica

    (Institito di Tecnologie Avanzate per l’Energia “Nicola Giordano”, CNR-ITAE, 98126 Messina, Italy)

Abstract

Solar thermal energy coupled to a seasonal sorption storage system stands as an alternative to fossil fuels to supply residential thermal energy demand in climates where solar energy availability is high in summer and low in winter, matching with a high space heating demand. Sorption storage systems usually have a high dependency on weather conditions (ambient temperature and solar irradiation). Therefore, in this study, the technical performance of a solar-driven seasonal sorption storage system, using an innovative composite sorbent and water as working fluid, was studied under three European climates, represented by: Paris, Munich, and Stockholm. All scenarios analyses were simulation-based under optimal system control, which allowed to maximize the system competitiveness by minimizing the system operational costs. The optimal scenarios profit from just 91, 82 and 76% of the total sorption system capacity, for Paris, Munich, and Stockholm, respectively. That means that an optimal control can identify the optimal sorption storage size for each location and avoid oversizing in future systems, which furthermore involves higher investment costs. The best coefficient of performance was obtained for Stockholm (0.31), despite having the coldest climate. The sorption system was able to work at minimum temperatures of −15 °C, showing independence from ambient temperature during its discharge. In conclusion, a seasonal sorption system based on selective water materials is suitable to be integrated into a single-family house in climates of central and northern Europe as long as an optimal control based on weather conditions, thermal demand, and system state is considered.

Suggested Citation

  • Alicia Crespo & Cèsar Fernández & Alvaro de Gracia & Andrea Frazzica, 2022. "Solar-Driven Sorption System for Seasonal Heat Storage under Optimal Control: Study for Different Climatic Zones," Energies, MDPI, vol. 15(15), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5604-:d:878403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2019. "Seasonal solar thermal energy storage using thermochemical sorption in domestic dwellings in the UK," Energy, Elsevier, vol. 166(C), pages 213-222.
    2. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    3. Yan, T. & Wang, R.Z. & Li, T.X., 2018. "Experimental investigation on thermochemical heat storage using manganese chloride/ammonia," Energy, Elsevier, vol. 143(C), pages 562-574.
    4. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Mikhaeil, Makram & Gaderer, Matthias & Dawoud, Belal, 2020. "On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study," Energy, Elsevier, vol. 207(C).
    6. Li, Tingxian & Wang, Ruzhu & Kiplagat, Jeremiah K. & Kang, YongTae, 2013. "Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy," Energy, Elsevier, vol. 50(C), pages 454-467.
    7. Li, T.X. & Wu, S. & Yan, T. & Wang, R.Z. & Zhu, J., 2017. "Experimental investigation on a dual-mode thermochemical sorption energy storage system," Energy, Elsevier, vol. 140(P1), pages 383-394.
    8. Jiang, L. & Li, S. & Wang, R.Q. & Fan, Y.B. & Zhang, X.J. & Roskilly, A.P., 2021. "Performance analysis on a hybrid compression-assisted sorption thermal battery for seasonal heat storage in severe cold region," Renewable Energy, Elsevier, vol. 180(C), pages 398-409.
    9. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Jiang, L. & Liu, W. & Lin, Y.C. & Wang, R.Q. & Zhang, X.J. & Hu, M.K., 2022. "Hybrid thermochemical sorption seasonal storage for ultra-low temperature solar energy utilization," Energy, Elsevier, vol. 239(PB).
    11. Frazzica, A. & Brancato, V. & Caprì, A. & Cannilla, C. & Gordeeva, L.G. & Aristov, Y.I., 2020. "Development of “salt in porous matrix” composites based on LiCl for sorption thermal energy storage," Energy, Elsevier, vol. 208(C).
    12. Zhao, Y.J. & Wang, R.Z. & Li, T.X. & Nomura, Y., 2016. "Investigation of a 10 kWh sorption heat storage device for effective utilization of low-grade thermal energy," Energy, Elsevier, vol. 113(C), pages 739-747.
    13. Frazzica, Andrea & Freni, Angelo, 2017. "Adsorbent working pairs for solar thermal energy storage in buildings," Renewable Energy, Elsevier, vol. 110(C), pages 87-94.
    14. Andrea Frazzica & Vincenza Brancato & Belal Dawoud, 2020. "Unified Methodology to Identify the Potential Application of Seasonal Sorption Storage Technology," Energies, MDPI, vol. 13(5), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crespo, Alicia & Fernández, Cèsar & Vérez, David & Tarragona, Joan & Borri, Emiliano & Frazzica, Andrea & Cabeza, Luisa F. & de Gracia, Alvaro, 2023. "Thermal performance assessment and control optimization of a solar-driven seasonal sorption storage system for residential application," Energy, Elsevier, vol. 263(PA).
    2. An, G.L. & Wang, L.W. & Zhang, Y.H., 2020. "Overall evaluation of single- and multi-halide composites for multi-mode thermal-energy storage," Energy, Elsevier, vol. 212(C).
    3. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
    4. Wu, S. & Li, T.X. & Wang, R.Z., 2018. "Experimental identification and thermodynamic analysis of ammonia sorption equilibrium characteristics on halide salts," Energy, Elsevier, vol. 161(C), pages 955-962.
    5. Wu, S. & Li, T.X. & Yan, T. & Wang, R.Z., 2019. "Advanced thermochemical resorption heat transformer for high-efficiency energy storage and heat transformation," Energy, Elsevier, vol. 175(C), pages 1222-1233.
    6. An, G.L. & Wang, L.W. & Gao, J., 2019. "Two-stage cascading desorption cycle for sorption thermal energy storage," Energy, Elsevier, vol. 174(C), pages 1091-1099.
    7. Ding, Zhixiong & Wu, Wei & Leung, Michael K.H., 2022. "On the rational development of advanced thermochemical thermal batteries for short-term and long-term energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Clark, Ruby-Jean & Farid, Mohammed, 2022. "Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials," Applied Energy, Elsevier, vol. 316(C).
    9. Benjamin Fumey & Luca Baldini, 2021. "Static Temperature Guideline for Comparative Testing of Sorption Heat Storage Systems for Building Application," Energies, MDPI, vol. 14(13), pages 1-15, June.
    10. Zhang, Hong & Yan, Ting & Yu, Nan & Li, Z.H. & Pan, Q.W., 2022. "Sorption based long-term thermal energy storage with strontium chloride/ammonia," Energy, Elsevier, vol. 239(PD).
    11. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    12. Humbert, Gabriele & Ding, Yulong & Sciacovelli, Adriano, 2022. "Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures," Applied Energy, Elsevier, vol. 311(C).
    13. Jiang, L. & Li, S. & Wang, R.Q. & Fan, Y.B. & Zhang, X.J. & Roskilly, A.P., 2021. "Performance analysis on a hybrid compression-assisted sorption thermal battery for seasonal heat storage in severe cold region," Renewable Energy, Elsevier, vol. 180(C), pages 398-409.
    14. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2019. "Seasonal solar thermal energy storage using thermochemical sorption in domestic dwellings in the UK," Energy, Elsevier, vol. 166(C), pages 213-222.
    16. Mehari, Abel & Xu, Z.Y. & Wang, R.Z., 2019. "Thermally-pressurized sorption heat storage cycle with low charging temperature," Energy, Elsevier, vol. 189(C).
    17. Geilfuß, Kristina & Dawoud, Belal, 2020. "Analytical investigation of a zeolite-NaY-water adsorption heat and cold storage and its integration into a steam power process," Energy, Elsevier, vol. 195(C).
    18. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    19. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Brites, Gonçalo J. & Garruço, Manuel & Fernandes, Marco S. & Sá Pinto, Diogo M. & Gaspar, Adélio R., 2024. "Seasonal storage for space heating using solar DHW surplus," Renewable Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5604-:d:878403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.