IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p874-883.html
   My bibliography  Save this article

Experimental investigation on a MnCl2–SrCl2/NH3 thermochemical resorption heat storage system

Author

Listed:
  • Yan, Ting
  • Kuai, Z.H.
  • Wu, S.F.

Abstract

Thermal energy storage is a pivotal technology for sustainable energy development and environmental protection. Thermochemical sorption heat storage, including adsorption and resorption heat storage technology, has received great attentions owing to large heat storage density, diversiform working modes and long-term heat storage capacity. The performance of thermochemical resorption heat storage system was measured on the basis of the sorption working pair of MnCl2–SrCl2/NH3. 3.78 kg and 4.38 kg MnCl2 and SrCl2 composite materials are filled in the sorption reactor. The long-term heat storage potential of thermochemical resorption heat storage system was investigated. The experimental results show the thermochemical sorption heat storage density varies between 398.44 kJ/kg (51.35 kWh/m3) composite material and 2027.74 kJ/kg (261.35 kWh/m3) composite material under the experimental conditions. The highest thermochemical sorption heat storage density is about 2027.74 kJ/kg (261.35 kWh/m3) composite material when charging and discharging temperature is 177 °C and 45 °C, respectively. The sorption heat storage efficiency ranges from 0.11 to 0.48 under the experimental conditions. The thermochemical sorption heat storage efficiency increases with the increment of charging temperature, whilst decreases with the increase of discharging temperature. The thermochemical sorption heat storage can supply thermal energy with different temperature level and therefore could satisfy miscellaneous requirements of heat users.

Suggested Citation

  • Yan, Ting & Kuai, Z.H. & Wu, S.F., 2020. "Experimental investigation on a MnCl2–SrCl2/NH3 thermochemical resorption heat storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 874-883.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:874-883
    DOI: 10.1016/j.renene.2019.09.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    2. Zhang, P. & Xiao, X. & Meng, Z.N. & Li, M., 2015. "Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement," Applied Energy, Elsevier, vol. 137(C), pages 758-772.
    3. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    4. Yan, T. & Wang, R.Z. & Li, T.X., 2018. "Experimental investigation on thermochemical heat storage using manganese chloride/ammonia," Energy, Elsevier, vol. 143(C), pages 562-574.
    5. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    6. Li, Tingxian & Wang, Ruzhu & Kiplagat, Jeremiah K. & Kang, YongTae, 2013. "Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy," Energy, Elsevier, vol. 50(C), pages 454-467.
    7. Aydin, Devrim & Casey, Sean P. & Chen, Xiangjie & Riffat, Saffa, 2018. "Numerical and experimental analysis of a novel heat pump driven sorption storage heater," Applied Energy, Elsevier, vol. 211(C), pages 954-974.
    8. Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
    9. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    10. Li, T.X. & Xu, J.X. & Yan, T. & Wang, R.Z., 2016. "Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage," Energy, Elsevier, vol. 107(C), pages 347-359.
    11. Michel, Benoit & Mazet, Nathalie & Mauran, Sylvain & Stitou, Driss & Xu, Jing, 2012. "Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed," Energy, Elsevier, vol. 47(1), pages 553-563.
    12. Jiang, L. & Zhu, F.Q. & Wang, L.W. & Liu, C.Z. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2–CaCl2–NH3 thermal energy storage system," Renewable Energy, Elsevier, vol. 91(C), pages 130-136.
    13. Yan, T. & Wang, R.Z. & Li, T.X. & Wang, L.W. & Fred, Ishugah T., 2015. "A review of promising candidate reactions for chemical heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 13-31.
    14. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
    15. Lefebvre, Dominique & Tezel, F. Handan, 2017. "A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 116-125.
    16. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    17. Wang, L.W. & Bao, H.S. & Wang, R.Z., 2009. "A comparison of the performances of adsorption and resorption refrigeration systems powered by the low grade heat," Renewable Energy, Elsevier, vol. 34(11), pages 2373-2379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, G.L. & Wu, S.F. & Wang, L.W. & Zhang, C. & Zhang, B., 2022. "Comparative investigations of sorption/resorption/cascading cycles for long-term thermal energy storage," Applied Energy, Elsevier, vol. 306(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, T.X. & Wu, S. & Yan, T. & Wang, R.Z. & Zhu, J., 2017. "Experimental investigation on a dual-mode thermochemical sorption energy storage system," Energy, Elsevier, vol. 140(P1), pages 383-394.
    2. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W. & Lu, Y.J., 2017. "Analysis on innovative modular sorption and resorption thermal cell for cold and heat cogeneration," Applied Energy, Elsevier, vol. 204(C), pages 767-779.
    3. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
    4. Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
    5. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    6. Mehrabadi, Abbas & Farid, Mohammed, 2018. "New salt hydrate composite for low-grade thermal energy storage," Energy, Elsevier, vol. 164(C), pages 194-203.
    7. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    8. Li, T.X. & Wu, S. & Yan, T. & Xu, J.X. & Wang, R.Z., 2016. "A novel solid–gas thermochemical multilevel sorption thermal battery for cascaded solar thermal energy storage," Applied Energy, Elsevier, vol. 161(C), pages 1-10.
    9. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    11. Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
    12. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    13. Mehari, Abel & Xu, Z.Y. & Wang, R.Z., 2019. "Thermally-pressurized sorption heat storage cycle with low charging temperature," Energy, Elsevier, vol. 189(C).
    14. Yan, Ting & Zhang, Hong & Yu, Nan & Li, Dong & Pan, Q.W., 2022. "Performance of thermochemical adsorption heat storage system based on MnCl2-NH3 working pair," Energy, Elsevier, vol. 239(PD).
    15. Wang, L.W. & Jiang, L. & Gao, J. & Gao, P. & Wang, R.Z., 2017. "Analysis of resorption working pairs for air conditioners of electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 594-603.
    16. Jiang, Long & Gao, Jiao & Wang, Liwei & Wang, Ruzhu & Lu, Yiji & Roskilly, Anthony Paul, 2017. "Investigation on performance of multi-salt composite sorbents for multilevel sorption thermal energy storage," Applied Energy, Elsevier, vol. 190(C), pages 1029-1038.
    17. Donkers, P.A.J. & Sögütoglu, L.C. & Huinink, H.P. & Fischer, H.R. & Adan, O.C.G., 2017. "A review of salt hydrates for seasonal heat storage in domestic applications," Applied Energy, Elsevier, vol. 199(C), pages 45-68.
    18. Li, T.X. & Xu, J.X. & Yan, T. & Wang, R.Z., 2016. "Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage," Energy, Elsevier, vol. 107(C), pages 347-359.
    19. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:874-883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.