IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp1006-1017.html
   My bibliography  Save this article

Work-heat exchanger network synthesis (WHENS)

Author

Listed:
  • Huang, Kefeng
  • Karimi, I.A.

Abstract

Research on heat integration has made significant advances in reducing utility consumption in chemical plants. However, the idea of work exchange between high and low-pressure process streams to reduce the consumption of the relatively expensive electricity has received limited attention. In this article, we present a more efficient mixed-integer nonlinear programming (MINLP) formulation to synthesize work-heat exchanger networks (WHENs). We propose a superstructure that explicitly considers constant-pressure streams for heat integration and enables an optimized selection of end-heaters and end-coolers to meet the desired temperature targets. Using a few examples, we demonstrate that simultaneous integration of work and heat in a chemical plant can offer significant savings in total annualized cost. In a case study from the literature, our approach yields a network with 3.1% lower total annualized cost, 10.6% more work exchange, and 81.0% more heat exchange than the best solution obtained from the existing literature approach. Furthermore, our approach successfully solves two case studies that previous literature approaches fail to solve.

Suggested Citation

  • Huang, Kefeng & Karimi, I.A., 2016. "Work-heat exchanger network synthesis (WHENS)," Energy, Elsevier, vol. 113(C), pages 1006-1017.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:1006-1017
    DOI: 10.1016/j.energy.2016.07.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216310489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yufei & Feng, Xiao & Cai, Yan & Zhu, Maobin & Chu, Khim H., 2009. "Improving a process's efficiency by exploiting heat pockets in its heat exchange network," Energy, Elsevier, vol. 34(11), pages 1925-1932.
    2. Panjeshahi, M.H. & Ghasemian Langeroudi, E. & Tahouni, N., 2008. "Retrofit of ammonia plant for improving energy efficiency," Energy, Elsevier, vol. 33(1), pages 46-64.
    3. Ozbilen, Ahmet & Dincer, Ibrahim & Rosen, Marc A., 2014. "Development of new heat exchanger network designs for a four-step Cu–Cl cycle for hydrogen production," Energy, Elsevier, vol. 77(C), pages 338-351.
    4. Cheng, XueTao, 2013. "Entropy resistance minimization: An alternative method for heat exchanger analyses," Energy, Elsevier, vol. 58(C), pages 672-678.
    5. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2013. "Optimising entire lifetime economy of heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 222-235.
    6. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Minimisation of a heat exchanger networks' cost over its lifetime," Energy, Elsevier, vol. 45(1), pages 264-276.
    7. Cheng, Xuetao & Liang, Xingang, 2012. "Heat-work conversion optimization of one-stream heat exchanger networks," Energy, Elsevier, vol. 47(1), pages 421-429.
    8. Cheng, Xuetao & Liang, Xingang, 2012. "Optimization principles for two-stream heat exchangers and two-stream heat exchanger networks," Energy, Elsevier, vol. 46(1), pages 386-392.
    9. Kaluri, Ram Satish & Basak, Tanmay, 2011. "Entropy generation due to natural convection in discretely heated porous square cavities," Energy, Elsevier, vol. 36(8), pages 5065-5080.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavão, Leandro V. & Caballero, José A. & Ravagnani, Mauro A.S.S. & Costa, Caliane B.B., 2020. "A pinch-based method for defining pressure manipulation routes in work and heat exchange networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Gao, Wei & Feng, Xiao, 2017. "The power target of a fluid machinery network in a circulating water system," Applied Energy, Elsevier, vol. 205(C), pages 847-854.
    3. Hamsani, Muhammad Nurheilmi & Walmsley, Timothy Gordon & Liew, Peng Yen & Wan Alwi, Sharifah Rafidah, 2018. "Combined Pinch and exergy numerical analysis for low temperature heat exchanger network," Energy, Elsevier, vol. 153(C), pages 100-112.
    4. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2020. "Synthesis and optimization of work and heat exchange networks using an MINLP model with a reduced number of decision variables," Applied Energy, Elsevier, vol. 262(C).
    5. Onishi, Viviani C. & Quirante, Natalia & Ravagnani, Mauro A.S.S. & Caballero, José A., 2018. "Optimal synthesis of work and heat exchangers networks considering unclassified process streams at sub and above-ambient conditions," Applied Energy, Elsevier, vol. 224(C), pages 567-581.
    6. Zhang, Qiao & Yang, Sen & Feng, Xiao, 2021. "Thermodynamic principle based work exchanger network integration for cost-effective refinery hydrogen networks," Energy, Elsevier, vol. 230(C).
    7. Fu, Chao & Vikse, Matias & Gundersen, Truls, 2018. "Work and heat integration: An emerging research area," Energy, Elsevier, vol. 158(C), pages 796-806.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltani, Hadi & Shafiei, Sirous, 2011. "Heat exchanger networks retrofit with considering pressure drop by coupling genetic algorithm with LP (linear programming) and ILP (integer linear programming) methods," Energy, Elsevier, vol. 36(5), pages 2381-2391.
    2. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Yan, Junjie, 2018. "Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes," Energy, Elsevier, vol. 158(C), pages 330-342.
    3. Guo, Xiaofeng & Fan, Yilin & Luo, Lingai, 2014. "Multi-channel heat exchanger-reactor using arborescent distributors: A characterization study of fluid distribution, heat exchange performance and exothermic reaction," Energy, Elsevier, vol. 69(C), pages 728-741.
    4. Pavão, Leandro V. & Pozo, Carlos & Costa, Caliane B.B. & Ravagnani, Mauro A.S.S. & Jiménez, Laureano, 2017. "Financial risks management of heat exchanger networks under uncertain utility costs via multi-objective optimization," Energy, Elsevier, vol. 139(C), pages 98-117.
    5. Du, S. & Wang, R.Z. & Xia, Z.Z., 2014. "Optimal ammonia water absorption refrigeration cycle with maximum internal heat recovery derived from pinch technology," Energy, Elsevier, vol. 68(C), pages 862-869.
    6. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2014. "Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization," Energy, Elsevier, vol. 65(C), pages 364-373.
    8. Ebrahimzadeh, Edris & Wilding, Paul & Frankman, David & Fazlollahi, Farhad & Baxter, Larry L., 2016. "Theoretical and experimental analysis of dynamic heat exchanger: Retrofit configuration," Energy, Elsevier, vol. 96(C), pages 545-560.
    9. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    10. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    11. Mehdizadeh, Fariba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Total site exergy analysis, using a new conceptual method," Energy, Elsevier, vol. 250(C).
    12. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    13. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2013. "Optimising entire lifetime economy of heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 222-235.
    14. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    15. Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah & Khakzad, Morteza, 2017. "Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders: Effect of polymers and surfactants," Energy, Elsevier, vol. 126(C), pages 830-840.
    16. Razi, Faran & Dincer, Ibrahim & Gabriel, Kamiel, 2020. "Energy and exergy analyses of a new integrated thermochemical copper-chlorine cycle for hydrogen production," Energy, Elsevier, vol. 205(C).
    17. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    18. Bohong Wang & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Min Zeng, 2020. "An Extended Grid Diagram for Heat Exchanger Network Retrofit Considering Heat Exchanger Types," Energies, MDPI, vol. 13(10), pages 1-14, May.
    19. Xiaoping Chen & Xiaoming Zhang & Xiaojun Li, 2022. "Evolution Characteristics of Energy Change Field in a Centrifugal Pump during Rapid Starting Period," Energies, MDPI, vol. 15(22), pages 1-15, November.
    20. Kefayati, G.H.R., 2016. "Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: ," Energy, Elsevier, vol. 107(C), pages 917-959.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:1006-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.