IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp1094-1110.html
   My bibliography  Save this article

CO2 injection-induced fracturing in naturally fractured shale rocks

Author

Listed:
  • Wang, Lei
  • Yao, Bowen
  • Xie, Haojun
  • Winterfeld, Philip H.
  • Kneafsey, Timothy J.
  • Yin, Xiaolong
  • Wu, Yu-Shu

Abstract

Niobrara shale cubes of 20 cm from Colorado were employed to investigate gas and supercritical CO2 injection-induced fracturing in naturally fractured caprocks of deep aquifers/depleted reservoirs and fractured shale reservoirs. Under tri-axial stresses, gas or supercritical CO2 was injected into the center of the cubes to induce fracturing. Real-time pressure and temperature, acoustic wave, pressure decay, fracture coloring, and gas fracturing were used to characterize the fracturing process and fracture morphology. Without pore pressure, CO2 injection-induced fracturing occurred and completed instantly, accompanied by an evident temperature drop. Strongly bonded fractures barely affected transverse fracture propagation, whereas weakly bonded or open fractures arrested the injected fluid first and then allowed it to generate new fractures perpendicular to the minimum horizontal stress. Breakdown pressures for cubes with preexisting fractures using gas and supercritical CO2 are much lower than both poroelastic predictions and slick-water fracturing pressure, and some are even lower than the minimum horizontal stress. This is attributed to unconformable preexisting fractures and the low viscosity of CO2. Moreover, decreasing tri-axial stress levels and increasing stress differences tend to lower the breakdown pressure. This study is instructive for understanding and tackling geomechanical issues related to CO2 geological storage and fracturing of shale reservoirs.

Suggested Citation

  • Wang, Lei & Yao, Bowen & Xie, Haojun & Winterfeld, Philip H. & Kneafsey, Timothy J. & Yin, Xiaolong & Wu, Yu-Shu, 2017. "CO2 injection-induced fracturing in naturally fractured shale rocks," Energy, Elsevier, vol. 139(C), pages 1094-1110.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:1094-1110
    DOI: 10.1016/j.energy.2017.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    2. ., 2017. "Global imbalances," Chapters, in: Financial Crises, 1929 to the Present, Second Edition, chapter 9, pages 175-180, Edward Elgar Publishing.
    3. Iribarren, Diego & Petrakopoulou, Fontina & Dufour, Javier, 2013. "Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery," Energy, Elsevier, vol. 50(C), pages 477-485.
    4. Clark, Gordon L & Monk, Ashby H B, 2017. "Institutional Investors in Global Markets," OUP Catalogue, Oxford University Press, number 9780198793212.
    5. ., 2017. "The EU as a global actor," Chapters, in: North-South Regional Trade Agreements as Legal Regimes, chapter 3, pages 76-109, Edward Elgar Publishing.
    6. Buttinelli, M. & Procesi, M. & Cantucci, B. & Quattrocchi, F. & Boschi, E., 2011. "The geo-database of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy," Energy, Elsevier, vol. 36(5), pages 2968-2983.
    7. Pham, V.T.H. & Riis, F. & Gjeldvik, I.T. & Halland, E.K. & Tappel, I.M. & Aagaard, P., 2013. "Assessment of CO2 injection into the south Utsira-Skade aquifer, the North Sea, Norway," Energy, Elsevier, vol. 55(C), pages 529-540.
    8. Wipo, 2017. "Global Innovation Index 2017," WIPO Economics & Statistics Series, World Intellectual Property Organization - Economics and Statistics Division, number 2017:gii, April.
    9. Vulin, Domagoj & Kurevija, Tomislav & Kolenkovic, Iva, 2012. "The effect of mechanical rock properties on CO2 storage capacity," Energy, Elsevier, vol. 45(1), pages 512-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Liqiang & Chen, Yixin & Du, Juan & Liu, Pingli & Li, Nianyin & Luo, Zhifeng & Zhang, Chencheng & Huang, Fushan, 2019. "Experimental Study on a new type of self-propping fracturing technology," Energy, Elsevier, vol. 183(C), pages 249-261.
    2. Liang Gong & Yuan Zhang & Na Li & Ze-Kai Gu & Bin Ding & Chuan-Yong Zhu, 2020. "Molecular Investigation on the Displacement Characteristics of CH 4 by CO 2 , N 2 and Their Mixture in a Composite Shale Model," Energies, MDPI, vol. 14(1), pages 1-13, December.
    3. Pahari, Silabrata & Bhandakkar, Parth & Akbulut, Mustafa & Sang-Il Kwon, Joseph, 2021. "Optimal pumping schedule with high-viscosity gel for uniform distribution of proppant in unconventional reservoirs," Energy, Elsevier, vol. 216(C).
    4. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    5. Yi Hu & Feng Liu & Yuqiang Hu & Yong Kang & Hao Chen & Jiawei Liu, 2019. "Propagation Characteristics of Supercritical Carbon Dioxide Induced Fractures under True Tri-Axial Stresses," Energies, MDPI, vol. 12(22), pages 1-13, November.
    6. Xu, Chengyuan & Yan, Xiaopeng & Kang, Yili & You, Lijun & You, Zhenjiang & Zhang, Hao & Zhang, Jingyi, 2019. "Friction coefficient: A significant parameter for lost circulation control and material selection in naturally fractured reservoir," Energy, Elsevier, vol. 174(C), pages 1012-1025.
    7. Pan, Jienan & Du, Xuetian & Wang, Xianglong & Hou, Quanlin & Wang, Zhenzhi & Yi, Jiale & Li, Meng, 2024. "Pore and permeability changes in coal induced by true triaxial supercritical carbon dioxide fracturing based on low-field nuclear magnetic resonance," Energy, Elsevier, vol. 286(C).
    8. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    9. Zhang, He, 2024. "Study on microscale stress sensitivity of CO2 foam fracturing in tight reservoirs," Energy, Elsevier, vol. 294(C).
    10. Tian, Shifeng & Zhou, Junping & Xian, Xuefu & Gan, Quan & Yang, Kang & Zheng, Yi & Deng, Guangrong & Zhang, Fengshou, 2023. "Impact of supercritical CO2 exposure time on the porosity and permeability of dry and wet shale: The influence of chemo-mechanical coupling effects," Energy, Elsevier, vol. 270(C).
    11. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    12. Lin Wu & Zhifeng Luo & Liqiang Zhao & Nanling Zhang & Zhiguang Yao & Yucheng Jia, 2022. "Transient temperature‐pressure field model of supercritical CO2 fracturing wellbore with tubing and annulus co‐injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 85-102, February.
    13. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    14. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    2. Song, Chunfeng & Kitamura, Yutaka & Li, Shuhong, 2014. "Energy analysis of the cryogenic CO2 capture process based on Stirling coolers," Energy, Elsevier, vol. 65(C), pages 580-589.
    3. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    4. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    5. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    6. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    7. Majeda Khraisheh & Khadija M. Zadeh & Abedalkhader I. Alkhouzaam & Dorra Turki & Mohammad K. Hassan & Fares Al Momani & Syed M. J. Zaidi, 2020. "Characterization of polysulfone/diisopropylamine 1‐alkyl‐3‐methylimidazolium ionic liquid membranes: high pressure gas separation applications," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 795-808, August.
    8. Magoua Mbeugang, Christian Fabrice & Li, Bin & Lin, Dan & Xie, Xing & Wang, Shuaijun & Wang, Shuang & Zhang, Shu & Huang, Yong & Liu, Dongjing & Wang, Qian, 2021. "Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide," Energy, Elsevier, vol. 228(C).
    9. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    10. Fan, Xing & Wang, Yangle & Zhou, Yuan & Chen, Jingtan & Huang, Yanping & Wang, Junfeng, 2018. "Experimental study of supercritical CO2 leakage behavior from pressurized vessels," Energy, Elsevier, vol. 150(C), pages 342-350.
    11. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    12. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Yang, Yang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander, 2017. "Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline," Energy, Elsevier, vol. 118(C), pages 1066-1078.
    13. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    14. Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
    15. Procesi, M. & Cantucci, B. & Buttinelli, M. & Armezzani, G. & Quattrocchi, F. & Boschi, E., 2013. "Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy)," Applied Energy, Elsevier, vol. 110(C), pages 104-131.
    16. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    17. Irani, Maryam & Jacobson, Andrew T. & Gasem, Khaled A.M. & Fan, Maohong, 2018. "Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture," Energy, Elsevier, vol. 157(C), pages 1-9.
    18. Milica Jovanoviæ & Jasmina Dlaèiæ & Milan Okanoviæ, 2018. "Digitalization and society’s sustainable development – Measures and implications," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(2), pages 905-928.
    19. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:1094-1110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.