IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p2-d466183.html
   My bibliography  Save this article

Molecular Investigation on the Displacement Characteristics of CH 4 by CO 2 , N 2 and Their Mixture in a Composite Shale Model

Author

Listed:
  • Liang Gong

    (College of New Energy, China University of Petroleum (East China), Qingdao 266580, China)

  • Yuan Zhang

    (College of New Energy, China University of Petroleum (East China), Qingdao 266580, China)

  • Na Li

    (College of New Energy, China University of Petroleum (East China), Qingdao 266580, China)

  • Ze-Kai Gu

    (College of New Energy, China University of Petroleum (East China), Qingdao 266580, China)

  • Bin Ding

    (College of New Energy, China University of Petroleum (East China), Qingdao 266580, China)

  • Chuan-Yong Zhu

    (College of New Energy, China University of Petroleum (East China), Qingdao 266580, China)

Abstract

The rapid growth in energy consumption and environmental pollution have greatly stimulated the exploration and utilization of shale gas. The injection of gases such as CO 2 , N 2 , and their mixture is currently regarded as one of the most effective ways to enhance gas recovery from shale reservoirs. In this study, molecular simulations were conducted on a kaolinite–kerogen IID composite shale matrix to explore the displacement characteristics of CH 4 using different injection gases, including CO 2 , N 2 , and their mixture. The results show that when the injection pressure was lower than 10 MPa, increasing the injection pressure improved the displacement capacity of CH 4 by CO 2 . Correspondingly, an increase of formation temperature also increased the displacement efficiency of CH 4 , but an increase of pore size slightly increased this displacement efficiency. Moreover, it was found that when the proportion of CO 2 and N 2 was 1:1, the displacement efficiency of CH 4 was the highest, which proved that the simultaneous injection of CO 2 and N 2 had a synergistic effect on shale gas production. The results of this paper will provide guidance and reference for the displacement exploitation of shale gas by injection gases.

Suggested Citation

  • Liang Gong & Yuan Zhang & Na Li & Ze-Kai Gu & Bin Ding & Chuan-Yong Zhu, 2020. "Molecular Investigation on the Displacement Characteristics of CH 4 by CO 2 , N 2 and Their Mixture in a Composite Shale Model," Energies, MDPI, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:2-:d:466183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Lei & Yao, Bowen & Xie, Haojun & Winterfeld, Philip H. & Kneafsey, Timothy J. & Yin, Xiaolong & Wu, Yu-Shu, 2017. "CO2 injection-induced fracturing in naturally fractured shale rocks," Energy, Elsevier, vol. 139(C), pages 1094-1110.
    2. Lyu, Qiao & Long, Xinping & Ranjith, P.G. & Tan, Jingqiang & Kang, Yong & Wang, Zhanghu, 2018. "Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2," Energy, Elsevier, vol. 147(C), pages 1288-1298.
    3. Fengshuang Du & Bahareh Nojabaei, 2019. "A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control," Energies, MDPI, vol. 12(12), pages 1-33, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    2. Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
    3. Lin Wu & Zhifeng Luo & Liqiang Zhao & Nanling Zhang & Zhiguang Yao & Yucheng Jia, 2022. "Transient temperature‐pressure field model of supercritical CO2 fracturing wellbore with tubing and annulus co‐injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 85-102, February.
    4. Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
    5. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    6. Chengkai Fan & Qi Li & Jianli Ma & Duoxing Yang, 2019. "Fiber Bragg grating‐based experimental and numerical investigations of CO2 migration front in saturated sandstone under subcritical and supercritical conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 106-124, February.
    7. Pan, Jienan & Du, Xuetian & Wang, Xianglong & Hou, Quanlin & Wang, Zhenzhi & Yi, Jiale & Li, Meng, 2024. "Pore and permeability changes in coal induced by true triaxial supercritical carbon dioxide fracturing based on low-field nuclear magnetic resonance," Energy, Elsevier, vol. 286(C).
    8. Zhang, He, 2024. "Study on microscale stress sensitivity of CO2 foam fracturing in tight reservoirs," Energy, Elsevier, vol. 294(C).
    9. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    10. Wenchao Liu & Yuejie Yang & Chengcheng Qiao & Chen Liu & Boyu Lian & Qingwang Yuan, 2023. "Progress of Seepage Law and Development Technologies for Shale Condensate Gas Reservoirs," Energies, MDPI, vol. 16(5), pages 1-30, March.
    11. Yi Hu & Feng Liu & Yuqiang Hu & Yong Kang & Hao Chen & Jiawei Liu, 2019. "Propagation Characteristics of Supercritical Carbon Dioxide Induced Fractures under True Tri-Axial Stresses," Energies, MDPI, vol. 12(22), pages 1-13, November.
    12. Beining Zhang & Weiguo Liang & Pathegama Gamage Ranjith & Wei He & Zhigang Li & Xiaogang Zhang, 2018. "Effects of Coal Deformation on Different-Phase CO 2 Permeability in Sub-Bituminous Coal: An Experimental Investigation," Energies, MDPI, vol. 11(11), pages 1-25, October.
    13. Chen, Kang & Liu, Xianfeng & Nie, Baisheng & Zhang, Chengpeng & Song, Dazhao & Wang, Longkang & Yang, Tao, 2022. "Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2," Energy, Elsevier, vol. 248(C).
    14. Tianjiao Cheng & Takeji Hirota & Hiroshi Onoda & Andante Hadi Pandyaswargo, 2024. "LCCO 2 Assessment and Fertilizer Production from Absorbed-CO 2 Solid Matter in a Small-Scale DACCU Plant," Energies, MDPI, vol. 17(19), pages 1-16, October.
    15. Guo, Hongguang & Zhang, Yujie & Zhang, Yiwen & Li, Xingfeng & Li, Zhigang & Liang, Weiguo & Huang, Zaixing & Urynowicz, Michael & Ali, Muhammad Ishtiaq, 2021. "Feasibility study of enhanced biogenic coalbed methane production by super-critical CO2 extraction," Energy, Elsevier, vol. 214(C).
    16. Chenxu Yang & Jintao Wu & Haojun Wu & Yong Jiang & Xinfei Song & Ping Guo & Qixuan Zhang & Hao Tian, 2024. "Research on Gas Injection Limits and Development Methods of CH 4 /CO 2 Synergistic Displacement in Offshore Fractured Condensate Gas Reservoirs," Energies, MDPI, vol. 17(13), pages 1-12, July.
    17. Yang, Xianyu & Cai, Jihua & Jiang, Guosheng & Xie, Jingyu & Shi, Yanping & Chen, Shuya & Yue, Ye & Yu, Lang & He, Yichao & Xie, Kunzhi, 2020. "Nanoparticle plugging prediction of shale pores: A numerical and experimental study," Energy, Elsevier, vol. 208(C).
    18. Ayal Wanniarachchi & Ranjith Pathegama Gamage & Qiao Lyu & Samintha Perera & Hiruni Wickramarathne & Tharaka Rathnaweera, 2018. "Mechanical Characterization of Low Permeable Siltstone under Different Reservoir Saturation Conditions: An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-21, December.
    19. Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
    20. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:2-:d:466183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.